Zhen-Shan Zhang, Ya-Zhe Zhang, Xing-Xin Liu, Wu Le, Peng-Fei Xiang
{"title":"Comparative study of volatile compounds of cold-pressed oils extracted from three different oilseeds after gamma irradiation.","authors":"Zhen-Shan Zhang, Ya-Zhe Zhang, Xing-Xin Liu, Wu Le, Peng-Fei Xiang","doi":"10.1111/1750-3841.17484","DOIUrl":null,"url":null,"abstract":"<p><p>To investigate the effect of gamma irradiation on the volatile compounds of edible oils. Three types of oilseeds, including peanut, sesame, and flaxseed, were subjected to 8 kGy gamma irradiation, followed by cold pressing to extract their oils. The volatile compounds of the oils were isolated by simultaneous distillation extraction and analyzed by gas chromatography-mass spectrometry. A total of 91 volatile compounds were identified, which can be grouped into eight categories: hydrocarbons, aldehydes, ketones, alcohols, acids, esters, furans, and benzene derivatives. Irradiation treatment resulted in a significant increase in the levels of hydrocarbons, aldehydes, and ketones in all oil samples (p < 0.05), with the greatest increase observed in hydrocarbons (4-14 times). In contrast, changes in alcohols, acids, esters, furans, and benzene derivatives were related to oilseed type. The increased hydrocarbons mainly originated from the degradation of palmitic, stearic, oleic, and linoleic acids. The irradiation resistance of the three oilseeds varied considerably, in the order: flaxseed > sesame > peanut. Based on the odor activity value, 11 key aroma compounds were selected, and (E)-2-decenal (tallow, oily, and orange), 1-octanol (soapy and oily), and 1-nonanol (floral and soapy) were only detected in the irradiated samples. Principal component analysis revealed that the oil samples of the three oilseeds could be well classified based on their key aroma compounds, and that the irradiation treatment had no remarkable effect on their intrinsic aroma.</p>","PeriodicalId":193,"journal":{"name":"Journal of Food Science","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Food Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/1750-3841.17484","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
To investigate the effect of gamma irradiation on the volatile compounds of edible oils. Three types of oilseeds, including peanut, sesame, and flaxseed, were subjected to 8 kGy gamma irradiation, followed by cold pressing to extract their oils. The volatile compounds of the oils were isolated by simultaneous distillation extraction and analyzed by gas chromatography-mass spectrometry. A total of 91 volatile compounds were identified, which can be grouped into eight categories: hydrocarbons, aldehydes, ketones, alcohols, acids, esters, furans, and benzene derivatives. Irradiation treatment resulted in a significant increase in the levels of hydrocarbons, aldehydes, and ketones in all oil samples (p < 0.05), with the greatest increase observed in hydrocarbons (4-14 times). In contrast, changes in alcohols, acids, esters, furans, and benzene derivatives were related to oilseed type. The increased hydrocarbons mainly originated from the degradation of palmitic, stearic, oleic, and linoleic acids. The irradiation resistance of the three oilseeds varied considerably, in the order: flaxseed > sesame > peanut. Based on the odor activity value, 11 key aroma compounds were selected, and (E)-2-decenal (tallow, oily, and orange), 1-octanol (soapy and oily), and 1-nonanol (floral and soapy) were only detected in the irradiated samples. Principal component analysis revealed that the oil samples of the three oilseeds could be well classified based on their key aroma compounds, and that the irradiation treatment had no remarkable effect on their intrinsic aroma.
期刊介绍:
The goal of the Journal of Food Science is to offer scientists, researchers, and other food professionals the opportunity to share knowledge of scientific advancements in the myriad disciplines affecting their work, through a respected peer-reviewed publication. The Journal of Food Science serves as an international forum for vital research and developments in food science.
The range of topics covered in the journal include:
-Concise Reviews and Hypotheses in Food Science
-New Horizons in Food Research
-Integrated Food Science
-Food Chemistry
-Food Engineering, Materials Science, and Nanotechnology
-Food Microbiology and Safety
-Sensory and Consumer Sciences
-Health, Nutrition, and Food
-Toxicology and Chemical Food Safety
The Journal of Food Science publishes peer-reviewed articles that cover all aspects of food science, including safety and nutrition. Reviews should be 15 to 50 typewritten pages (including tables, figures, and references), should provide in-depth coverage of a narrowly defined topic, and should embody careful evaluation (weaknesses, strengths, explanation of discrepancies in results among similar studies) of all pertinent studies, so that insightful interpretations and conclusions can be presented. Hypothesis papers are especially appropriate in pioneering areas of research or important areas that are afflicted by scientific controversy.