{"title":"Biocompatible Hydrogel Coating on Silicone Rubber with Improved Antifouling and Durable Lubricious Properties.","authors":"Shuai Gao, Zheng Liu, Wei Zeng, Yunfeng Zhang, Fanjun Zhang, Dimeng Wu, Yunbing Wang","doi":"10.3390/gels10100647","DOIUrl":null,"url":null,"abstract":"<p><p>Silicone rubber is widely used in various medical applications. However, silicone rubber is prone to biofouling due to their affinity for lipids and has a high friction coefficient, which can significantly impact their efficacy and performance used as medical devices. Thus, the development of hydrogels with antifouling and lubricious abilities for the modification of silicone rubber is in high demand. We herein prepared a variety of hydrogel coatings mainly based on polyvinylpyrrolidone (PVP) and poly (ethylene glycol) diacrylate (PEGDA). We modified the silicone rubber using the prepared hydrogel coatings and cured it using a heating method. Then, we characterized its surface and evaluated the antifouling property, lubricious property, cytotoxicity, sensitization, and vaginal irritation. The results of water contact angle (WCA), protein adsorption, and friction coefficient indicated the success of the modification of the silicone rubber, leading to a significant decrease in the corresponding test values. Meanwhile, the results of cytotoxicity, sensitization, and vaginal irritation tests showed that the hydrogel coating-modified silicone rubbers have an excellent biocompatibility. This study describes how the silicone rubber could be modified with a biocompatible hydrogel coating. The hydrogel coating-modified silicone rubbers have improved antifouling and durable lubricious properties.</p>","PeriodicalId":12506,"journal":{"name":"Gels","volume":"10 10","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11507538/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gels","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/gels10100647","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Silicone rubber is widely used in various medical applications. However, silicone rubber is prone to biofouling due to their affinity for lipids and has a high friction coefficient, which can significantly impact their efficacy and performance used as medical devices. Thus, the development of hydrogels with antifouling and lubricious abilities for the modification of silicone rubber is in high demand. We herein prepared a variety of hydrogel coatings mainly based on polyvinylpyrrolidone (PVP) and poly (ethylene glycol) diacrylate (PEGDA). We modified the silicone rubber using the prepared hydrogel coatings and cured it using a heating method. Then, we characterized its surface and evaluated the antifouling property, lubricious property, cytotoxicity, sensitization, and vaginal irritation. The results of water contact angle (WCA), protein adsorption, and friction coefficient indicated the success of the modification of the silicone rubber, leading to a significant decrease in the corresponding test values. Meanwhile, the results of cytotoxicity, sensitization, and vaginal irritation tests showed that the hydrogel coating-modified silicone rubbers have an excellent biocompatibility. This study describes how the silicone rubber could be modified with a biocompatible hydrogel coating. The hydrogel coating-modified silicone rubbers have improved antifouling and durable lubricious properties.
期刊介绍:
The journal Gels (ISSN 2310-2861) is an international, open access journal on physical (supramolecular) and chemical gel-based materials. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the maximum length of the papers, and full experimental details must be provided so that the results can be reproduced. Short communications, full research papers and review papers are accepted formats for the preparation of the manuscripts.
Gels aims to serve as a reference journal with a focus on gel materials for researchers working in both academia and industry. Therefore, papers demonstrating practical applications of these materials are particularly welcome. Occasionally, invited contributions (i.e., original research and review articles) on emerging issues and high-tech applications of gels are published as special issues.