{"title":"Impact of κ-Carrageenan on the Freshwater Mussel (<i>Solenaia oleivora</i>) Protein Emulsion Gels: Gel Formation, Stability, and Curcumin Delivery.","authors":"Wanwen Chen, Wu Jin, Xueyan Ma, Haibo Wen, Gangchun Xu, Pao Xu, Hao Cheng","doi":"10.3390/gels10100659","DOIUrl":null,"url":null,"abstract":"<p><p>Protein-based emulsion gels are an ideal delivery system due to their unique structure, remarkable encapsulation efficiency, and tunable digestive behavior. Freshwater mussel (<i>Solenaia oleivora</i>) protein isolate (SoPI), an emerging sustainable protein with high nutritional value, possesses unique value in the development of functional foods. Herein, composite emulsion gels were fabricated with SoPI and κ-carrageenan (κ-CG) for the delivery of curcumin. SoPI/κ-CG stabilized emulsions possessed a high encapsulation efficiency of curcumin with a value of around 95%. The addition of κ-CG above 0.50% facilitated the emulsion gel formation and significantly improved the gel strength with 1326 g. Furthermore, the storage and digestive stability of curcumin were significantly improved as the κ-CG concentration increased. At 1.50% κ-CG, around 80% and 90% curcumin remained after 21-day storage at 45 °C and the 6 h in vitro gastrointestinal digestion, respectively. The addition of 0.50% κ-CG obtained the highest bioaccessibility of curcumin (~60%). This study illustrated the potential of SoPI emulsion gels as a carrier for stabilizing and delivering hydrophobic polyphenols.</p>","PeriodicalId":12506,"journal":{"name":"Gels","volume":"10 10","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11507120/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gels","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/gels10100659","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Protein-based emulsion gels are an ideal delivery system due to their unique structure, remarkable encapsulation efficiency, and tunable digestive behavior. Freshwater mussel (Solenaia oleivora) protein isolate (SoPI), an emerging sustainable protein with high nutritional value, possesses unique value in the development of functional foods. Herein, composite emulsion gels were fabricated with SoPI and κ-carrageenan (κ-CG) for the delivery of curcumin. SoPI/κ-CG stabilized emulsions possessed a high encapsulation efficiency of curcumin with a value of around 95%. The addition of κ-CG above 0.50% facilitated the emulsion gel formation and significantly improved the gel strength with 1326 g. Furthermore, the storage and digestive stability of curcumin were significantly improved as the κ-CG concentration increased. At 1.50% κ-CG, around 80% and 90% curcumin remained after 21-day storage at 45 °C and the 6 h in vitro gastrointestinal digestion, respectively. The addition of 0.50% κ-CG obtained the highest bioaccessibility of curcumin (~60%). This study illustrated the potential of SoPI emulsion gels as a carrier for stabilizing and delivering hydrophobic polyphenols.
期刊介绍:
The journal Gels (ISSN 2310-2861) is an international, open access journal on physical (supramolecular) and chemical gel-based materials. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the maximum length of the papers, and full experimental details must be provided so that the results can be reproduced. Short communications, full research papers and review papers are accepted formats for the preparation of the manuscripts.
Gels aims to serve as a reference journal with a focus on gel materials for researchers working in both academia and industry. Therefore, papers demonstrating practical applications of these materials are particularly welcome. Occasionally, invited contributions (i.e., original research and review articles) on emerging issues and high-tech applications of gels are published as special issues.