Jiaqiu Vince Sun , Zeyu Jing , James Rankin , John Rinzel
{"title":"Perceptual tri-stability, measured and fitted as emergent from a model for bistable alternations","authors":"Jiaqiu Vince Sun , Zeyu Jing , James Rankin , John Rinzel","doi":"10.1016/j.heares.2024.109123","DOIUrl":null,"url":null,"abstract":"<div><div>The human auditory system in attempting to decipher ambiguous sounds appears to resort to perceptual exploration as evidenced by multi-stable perceptual alternations. This phenomenon has been widely investigated via the auditory streaming paradigm, employing ABA_ triplet sequences with much research focused on perceptual bi-stability with the alternate percepts as either a single integrated stream or as two simultaneous distinct streams. We extend this inquiry with experiments and modeling to include tri-stable perception. Here, the segregated percepts may involve a foreground/background distinction. We collected empirical data from participants engaged in a tri-stable auditory task, utilizing this dataset to refine a neural mechanistic model that had successfully reproduced multiple features of auditory bi-stability. Remarkably, the model successfully emulated basic statistical characteristics of tri-stability without substantial modification. This model also allows us to demonstrate a parsimonious approach to account for individual variability by adjusting the parameter of either the noise level or the neural adaptation strength.</div></div>","PeriodicalId":12881,"journal":{"name":"Hearing Research","volume":"453 ","pages":"Article 109123"},"PeriodicalIF":2.5000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hearing Research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S037859552400176X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUDIOLOGY & SPEECH-LANGUAGE PATHOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The human auditory system in attempting to decipher ambiguous sounds appears to resort to perceptual exploration as evidenced by multi-stable perceptual alternations. This phenomenon has been widely investigated via the auditory streaming paradigm, employing ABA_ triplet sequences with much research focused on perceptual bi-stability with the alternate percepts as either a single integrated stream or as two simultaneous distinct streams. We extend this inquiry with experiments and modeling to include tri-stable perception. Here, the segregated percepts may involve a foreground/background distinction. We collected empirical data from participants engaged in a tri-stable auditory task, utilizing this dataset to refine a neural mechanistic model that had successfully reproduced multiple features of auditory bi-stability. Remarkably, the model successfully emulated basic statistical characteristics of tri-stability without substantial modification. This model also allows us to demonstrate a parsimonious approach to account for individual variability by adjusting the parameter of either the noise level or the neural adaptation strength.
期刊介绍:
The aim of the journal is to provide a forum for papers concerned with basic peripheral and central auditory mechanisms. Emphasis is on experimental and clinical studies, but theoretical and methodological papers will also be considered. The journal publishes original research papers, review and mini- review articles, rapid communications, method/protocol and perspective articles.
Papers submitted should deal with auditory anatomy, physiology, psychophysics, imaging, modeling and behavioural studies in animals and humans, as well as hearing aids and cochlear implants. Papers dealing with the vestibular system are also considered for publication. Papers on comparative aspects of hearing and on effects of drugs and environmental contaminants on hearing function will also be considered. Clinical papers will be accepted when they contribute to the understanding of normal and pathological hearing functions.