Decomposing the True Score Variance in Rated Responses to Divergent Thinking-Tasks for Assessing Creativity: A Multitrait-Multimethod Analysis.

IF 2.8 3区 心理学 Q1 PSYCHOLOGY, MULTIDISCIPLINARY Journal of Intelligence Pub Date : 2024-09-27 DOI:10.3390/jintelligence12100095
David Jendryczko
{"title":"Decomposing the True Score Variance in Rated Responses to Divergent Thinking-Tasks for Assessing Creativity: A Multitrait-Multimethod Analysis.","authors":"David Jendryczko","doi":"10.3390/jintelligence12100095","DOIUrl":null,"url":null,"abstract":"<p><p>It is shown how the Correlated Traits Correlated Methods Minus One (CTC(M - 1)) Multitrait-Multimethod model for cross-classified data can be modified and applied to divergent thinking (DT)-task responses scored for miscellaneous aspects of creative quality by several raters. In contrast to previous Confirmatory Factor Analysis approaches to analyzing DT-tasks, this model explicitly takes the cross-classified data structure resulting from the employment of raters into account and decomposes the true score variance into target-specific, DT-task object-specific, rater-specific, and rater-target interaction-specific components. This enables the computation of meaningful measurement error-free relative variance-parameters such as trait-consistency, object-method specificity, rater specificity, rater-target interaction specificity, and model-implied intra-class correlations. In the empirical application with alternate uses tasks as DT-measures, the model is estimated using Bayesian statistics. The results are compared to the results yielded with a simplified version of the model, once estimated with Bayesian statistics and once estimated with the maximum likelihood method. The results show high trait-correlations and low consistency across DT-measures which indicates more heterogeneity across the DT-measurement instruments than across different creativity aspects. Substantive deliberations and further modifications, extensions, useful applications, and limitations of the model are discussed.</p>","PeriodicalId":52279,"journal":{"name":"Journal of Intelligence","volume":"12 10","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11508196/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligence","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.3390/jintelligence12100095","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHOLOGY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

It is shown how the Correlated Traits Correlated Methods Minus One (CTC(M - 1)) Multitrait-Multimethod model for cross-classified data can be modified and applied to divergent thinking (DT)-task responses scored for miscellaneous aspects of creative quality by several raters. In contrast to previous Confirmatory Factor Analysis approaches to analyzing DT-tasks, this model explicitly takes the cross-classified data structure resulting from the employment of raters into account and decomposes the true score variance into target-specific, DT-task object-specific, rater-specific, and rater-target interaction-specific components. This enables the computation of meaningful measurement error-free relative variance-parameters such as trait-consistency, object-method specificity, rater specificity, rater-target interaction specificity, and model-implied intra-class correlations. In the empirical application with alternate uses tasks as DT-measures, the model is estimated using Bayesian statistics. The results are compared to the results yielded with a simplified version of the model, once estimated with Bayesian statistics and once estimated with the maximum likelihood method. The results show high trait-correlations and low consistency across DT-measures which indicates more heterogeneity across the DT-measurement instruments than across different creativity aspects. Substantive deliberations and further modifications, extensions, useful applications, and limitations of the model are discussed.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
分解对发散思维--评估创造力的任务的评分反应中的真实分数差异:多特征多方法分析》。
研究表明,用于交叉分类数据的相关特质相关方法减一(CTC(M - 1))多特质多方法模型可以进行修改,并应用于由多个评分者对创意质量的其他方面进行评分的发散思维(DT)任务响应。与以往分析 DT 任务的确认性因子分析方法不同,该模型明确考虑到了因采用评分者而产生的交叉分类数据结构,并将真实得分方差分解为目标特定成分、DT 任务对象特定成分、评分者特定成分以及评分者与目标交互作用特定成分。这样就能计算出有意义的无测量误差相对方差参数,如特质一致性、对象-方法特异性、评分者特异性、评分者-目标交互特异性以及模型推测的类内相关性。在将交替使用任务作为 DT 测量的经验应用中,使用贝叶斯统计对模型进行了估计。结果与简化版模型的结果进行了比较,简化版模型曾用贝叶斯统计法估算,也曾用最大似然法估算。结果显示,不同 DT 测量的特质相关性较高,一致性较低,这表明不同 DT 测量工具之间的异质性大于不同创造力方面的异质性。本文讨论了该模型的实质性问题以及进一步的修改、扩展、有用的应用和局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Intelligence
Journal of Intelligence Social Sciences-Education
CiteScore
2.80
自引率
17.10%
发文量
0
审稿时长
11 weeks
期刊最新文献
An Evaluation of the Relationship Between Critical Thinking and Creative Thinking: Complementary Metacognitive Processes or Strange Bedfellows? Using Cognitive Diagnostic Models to Evaluate the Two-Process Theory of Matrix Reasoning. Cognitive Abilities and School Achievement: Addressing Challenges Across Adolescence. The Relationship Between Learning Environment Perception, Achievement Goals, and the Undergraduate Deep Learning Approach: A Longitudinal Mediation Model. Indirect Effects of Executive Planning Functions and Affectivity on the Work Ethic of University Students.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1