Validation of a High-Performance Liquid Chromatography Method for the Online Determination of Phthalates in Water at a Trace Level

IF 1 4区 化学 Q4 CHEMISTRY, ANALYTICAL Journal of Analytical Chemistry Pub Date : 2024-10-22 DOI:10.1134/S1061934824700874
T. A. Grigorieva, A. V. Kuzmin, A. G. Gorshkov
{"title":"Validation of a High-Performance Liquid Chromatography Method for the Online Determination of Phthalates in Water at a Trace Level","authors":"T. A. Grigorieva,&nbsp;A. V. Kuzmin,&nbsp;A. G. Gorshkov","doi":"10.1134/S1061934824700874","DOIUrl":null,"url":null,"abstract":"<p>A method for the determination of phthalates in water is validated. It includes the sorption of hydrophobic components of a sample on a liquid chromatography column and the separation of analyte concentrated by online reversed-phase HPLC: for the quantitative determination of priority phthalates (<b>PPhs</b>) in surface waters at a trace level; qualitative assessment of the ratio of stable carbon isotopes <sup>13</sup>C/<sup>12</sup>C in the PPh composition. It is shown that there is no contribution of PPhs from the laboratory background to the measurement results. The limits of determination (0.15−0.22 μg/L) and the accuracy of the determination (±δ = 10−20%) are found using online reversed-phase HPLC and the UV detection of the analytes. The boundary values for the <sup>13</sup>C/<sup>12</sup>C isotope ratio are substantiated for a qualitative assessment of the results of measuring the Δ<sup>13</sup>C value in the structure of di(2-ethylhexyl) phthalate and its ingress into waters of Lake Baikal from biogenic and abiogenic sources is revealed. A procedure for determining PPhs by reversed-phase HPLC with online UV detection is tested in the field using a portable liquid chromatograph; the concentration ranges for di-<i>n</i>-butyl phthalate (from &lt;0.15 to 1.6 μg/L) and di(2-ethylhexyl) phthalate (from &lt;0.22 to 1.6 µg/L) in the coastal zone of Lake Baikal are evaluated.</p>","PeriodicalId":606,"journal":{"name":"Journal of Analytical Chemistry","volume":"79 10","pages":"1483 - 1490"},"PeriodicalIF":1.0000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1134/S1061934824700874","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

A method for the determination of phthalates in water is validated. It includes the sorption of hydrophobic components of a sample on a liquid chromatography column and the separation of analyte concentrated by online reversed-phase HPLC: for the quantitative determination of priority phthalates (PPhs) in surface waters at a trace level; qualitative assessment of the ratio of stable carbon isotopes 13C/12C in the PPh composition. It is shown that there is no contribution of PPhs from the laboratory background to the measurement results. The limits of determination (0.15−0.22 μg/L) and the accuracy of the determination (±δ = 10−20%) are found using online reversed-phase HPLC and the UV detection of the analytes. The boundary values for the 13C/12C isotope ratio are substantiated for a qualitative assessment of the results of measuring the Δ13C value in the structure of di(2-ethylhexyl) phthalate and its ingress into waters of Lake Baikal from biogenic and abiogenic sources is revealed. A procedure for determining PPhs by reversed-phase HPLC with online UV detection is tested in the field using a portable liquid chromatograph; the concentration ranges for di-n-butyl phthalate (from <0.15 to 1.6 μg/L) and di(2-ethylhexyl) phthalate (from <0.22 to 1.6 µg/L) in the coastal zone of Lake Baikal are evaluated.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在线测定水中痕量邻苯二甲酸盐的高效液相色谱法的验证
对一种测定水中邻苯二甲酸盐的方法进行了验证。该方法包括在液相色谱柱上吸附样品中的疏水成分,并通过在线反相高效液相色谱法分离浓缩的分析物:定量测定地表水中痕量水平的优先邻苯二甲酸盐(PPhs);定性评估 PPh 成分中稳定碳同位素 13C/12C 的比率。结果表明,实验室背景中的 PPhs 不会对测量结果产生影响。采用在线反相高效液相色谱法和紫外检测分析物,确定了测定限(0.15-0.22 μg/L)和测定精度(±δ = 10-20%)。13C/12C 同位素比值的边界值得到了证实,从而可以对邻苯二甲酸二(2-乙基己酯)结构中 Δ13C 值的测量结果进行定性评估,并揭示了生物源和非生物源进入贝加尔湖水域的情况。使用便携式液相色谱仪在实地测试了通过反相高效液相色谱法和在线紫外检测测定 PPhs 的程序;评估了贝加尔湖沿岸地区邻苯二甲酸二正丁酯(0.15 至 1.6 微克/升)和邻苯二甲酸二(2-乙基己酯)(0.22 至 1.6 微克/升)的浓度范围。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Analytical Chemistry
Journal of Analytical Chemistry 化学-分析化学
CiteScore
2.10
自引率
9.10%
发文量
146
审稿时长
13 months
期刊介绍: The Journal of Analytical Chemistry is an international peer reviewed journal that covers theoretical and applied aspects of analytical chemistry; it informs the reader about new achievements in analytical methods, instruments and reagents. Ample space is devoted to problems arising in the analysis of vital media such as water and air. Consideration is given to the detection and determination of metal ions, anions, and various organic substances. The journal welcomes manuscripts from all countries in the English or Russian language.
期刊最新文献
Separation of Chlorogenic Acids and Caffeine on a Diasfer-110-C10CN Stationary Phase Development, Validation, and Quantification of Organic Impurities with Mass Balance in the Levodopa and Benserazide Hydrochloride Pharmaceutical Dosage Form Surface-Assisted Laser Desorption/Ionization of Metal Complexes with Dithizone Determination of Potassium, Neodymium, and Strontium in Solid Solutions in the KNd(SO4)2·H2O–SrSO4·0.5H2O System Using X-Ray Fluorescence Spectrometry Thin-Layer Chromatography of Methylated Derivatives of Linear Alkylbenzene Sulfonates in Water Analysis by Gas Chromatography–Mass Spectrometry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1