Poly(3, 4-Ethylenedioxythiophene) as Promising Energy Storage Materials in Zinc-Ion Batteries.

IF 4.2 3区 化学 Q2 POLYMER SCIENCE Macromolecular Rapid Communications Pub Date : 2024-10-29 DOI:10.1002/marc.202400476
Tianyun Zhang, Jiaojiao Wu, Fen Ran
{"title":"Poly(3, 4-Ethylenedioxythiophene) as Promising Energy Storage Materials in Zinc-Ion Batteries.","authors":"Tianyun Zhang, Jiaojiao Wu, Fen Ran","doi":"10.1002/marc.202400476","DOIUrl":null,"url":null,"abstract":"<p><p>Benefiting from the advantages of high conductivity and good electrochemical stability, the conjugated conducting polymer poly (3, 4-ethylenedioxythiophene) is a promising energy storage material in zinc-ion batteries. Zinc-ion batteries have the advantages of high safety, environmental friendliness, and low cost, but suffer from unstable cathode material structure, poor electrical conductivity, and uncontrollable dendritic growth of zinc anodes. PEDOT, with its fast electrochemical response and wide potential window, is expected to make up for the shortcomings and enhance capacity and cycle life of zinc-ion batteries. Herein, in this review different polymerization methods of poly (3, 4-ethylenedioxythiophene) as well as their structure and properties are summarized; the progress in doping strategies related to the increasing conductivity and dispersivity of poly (3, 4-ethylenedioxythiophene) materials is discussed; specific applications of poly (3, 4-ethylenedioxythiophene)-based materials in anode, cathode, electrolyte, and binder of zinc-ion batteries are explored; and the representative advancements for improving the electrochemical performance of poly (3, 4-ethylenedioxythiophene) in zinc-ion batteries are emphasized. Finally, the current challenges of poly (3, 4-ethylenedioxythiophene) as promising materials in zinc-ion batteries and an insight into their future research directions are pointed out.</p>","PeriodicalId":205,"journal":{"name":"Macromolecular Rapid Communications","volume":" ","pages":"e2400476"},"PeriodicalIF":4.2000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Rapid Communications","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/marc.202400476","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Benefiting from the advantages of high conductivity and good electrochemical stability, the conjugated conducting polymer poly (3, 4-ethylenedioxythiophene) is a promising energy storage material in zinc-ion batteries. Zinc-ion batteries have the advantages of high safety, environmental friendliness, and low cost, but suffer from unstable cathode material structure, poor electrical conductivity, and uncontrollable dendritic growth of zinc anodes. PEDOT, with its fast electrochemical response and wide potential window, is expected to make up for the shortcomings and enhance capacity and cycle life of zinc-ion batteries. Herein, in this review different polymerization methods of poly (3, 4-ethylenedioxythiophene) as well as their structure and properties are summarized; the progress in doping strategies related to the increasing conductivity and dispersivity of poly (3, 4-ethylenedioxythiophene) materials is discussed; specific applications of poly (3, 4-ethylenedioxythiophene)-based materials in anode, cathode, electrolyte, and binder of zinc-ion batteries are explored; and the representative advancements for improving the electrochemical performance of poly (3, 4-ethylenedioxythiophene) in zinc-ion batteries are emphasized. Finally, the current challenges of poly (3, 4-ethylenedioxythiophene) as promising materials in zinc-ion batteries and an insight into their future research directions are pointed out.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
聚(3,4-乙烯二氧噻吩)作为锌-离子电池中的储能材料前景看好。
共轭导电聚合物聚(3,4-亚乙二氧基噻吩)具有高导电性和良好的电化学稳定性,是锌离子电池中一种前景广阔的储能材料。锌离子电池具有安全性高、环保、成本低等优点,但存在阴极材料结构不稳定、导电性差、锌阳极树枝状生长不可控等问题。PEDOT 具有快速的电化学响应和宽广的电位窗口,有望弥补上述不足,提高锌离子电池的容量和循环寿命。本综述总结了聚(3,4-亚乙二氧基噻吩)的不同聚合方法及其结构和性能,并讨论了与提高聚(3,4-亚乙二氧基噻吩)材料的导电性和分散性有关的掺杂策略的进展;探讨了基于聚(3,4-亚乙二氧基噻吩)的材料在锌离子电池的阳极、阴极、电解质和粘结剂中的具体应用;强调了改善锌离子电池中聚(3,4-亚乙二氧基噻吩)电化学性能的代表性进展。最后,指出了聚(3,4-亚乙二氧基噻吩)作为锌离子电池中的前景材料目前所面临的挑战,并对其未来的研究方向进行了展望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Macromolecular Rapid Communications
Macromolecular Rapid Communications 工程技术-高分子科学
CiteScore
7.70
自引率
6.50%
发文量
477
审稿时长
1.4 months
期刊介绍: Macromolecular Rapid Communications publishes original research in polymer science, ranging from chemistry and physics of polymers to polymers in materials science and life sciences.
期刊最新文献
Large-scale Conformational Changes of Diindole Functional Groups Driven by Cation-π Interactions and the Toughening Mechanism of Thermosets. Recyclable Amphiphilic Magnetic-responsive Mixed-Shell Nanoparticles With High Interfacial Activity Comparable to Janus Particles for Oily Water Purification. Stretchable and Self-Adhesive Conductors for Smart Epidermal Electronics. Swelling-Shrinking Behavior of a Hydrogel with a CO2-Switchable Volume Phase Transition Temperature. The Trade-Off between Dechlorination and Polymerization for Facile Fabrication of Electronic Grade Epoxidized Cardol.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1