{"title":"Stretchable and Self-Adhesive Conductors for Smart Epidermal Electronics.","authors":"Lin Wang, Desheng Kong","doi":"10.1002/marc.202400774","DOIUrl":null,"url":null,"abstract":"<p><p>Epidermal electronics utilize deformable devices that are seamlessly integrated into the body for various cutting-edge applications. Stretchable conductors are essential for creating electrodes in these devices, allowing them to interface with the skin for sensing and stimulation. Despite considerable progress in improved deformability, these conductors may not easily adhere to the skin for long-term use. There is a growing interest in imparting self-adhesive properties to epidermal devices to ensure secure integration with the body. This article focuses on the emerging field of stretchable and self-adhesive conductors. It explores the design strategy required to enable stretchability and conformability in these materials and discusses their pivotal applications in smart epidermal electronics. Additionally, this article also addresses the current challenges and future directions in this dynamic area of research.</p>","PeriodicalId":205,"journal":{"name":"Macromolecular Rapid Communications","volume":" ","pages":"e2400774"},"PeriodicalIF":4.2000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Rapid Communications","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/marc.202400774","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Epidermal electronics utilize deformable devices that are seamlessly integrated into the body for various cutting-edge applications. Stretchable conductors are essential for creating electrodes in these devices, allowing them to interface with the skin for sensing and stimulation. Despite considerable progress in improved deformability, these conductors may not easily adhere to the skin for long-term use. There is a growing interest in imparting self-adhesive properties to epidermal devices to ensure secure integration with the body. This article focuses on the emerging field of stretchable and self-adhesive conductors. It explores the design strategy required to enable stretchability and conformability in these materials and discusses their pivotal applications in smart epidermal electronics. Additionally, this article also addresses the current challenges and future directions in this dynamic area of research.
期刊介绍:
Macromolecular Rapid Communications publishes original research in polymer science, ranging from chemistry and physics of polymers to polymers in materials science and life sciences.