Japanese encephalitis virus-induced DNA methylation contributes to blood-brain barrier permeability by modulating tight junction protein expression.

IF 9.3 1区 医学 Q1 IMMUNOLOGY Journal of Neuroinflammation Pub Date : 2024-10-28 DOI:10.1186/s12974-024-03266-6
Xiao Xiang, Du Yu, Zhuangzhuang Li, Jelke J Fros, Jianchao Wei, Ke Liu, Zongjie Li, Donghua Shao, Beibei Li, Jeroen Kortekaas, Monique M van Oers, Zhiyong Ma, Gorben P Pijlman, Yafeng Qiu
{"title":"Japanese encephalitis virus-induced DNA methylation contributes to blood-brain barrier permeability by modulating tight junction protein expression.","authors":"Xiao Xiang, Du Yu, Zhuangzhuang Li, Jelke J Fros, Jianchao Wei, Ke Liu, Zongjie Li, Donghua Shao, Beibei Li, Jeroen Kortekaas, Monique M van Oers, Zhiyong Ma, Gorben P Pijlman, Yafeng Qiu","doi":"10.1186/s12974-024-03266-6","DOIUrl":null,"url":null,"abstract":"<p><p>Japanese encephalitis virus (JEV) is a neurotropic and neuroinvasive flavivirus causing viral encephalitis, which seriously threatens the development of animal husbandry and human health. DNA methylation is a major epigenetic modification involved in viral pathogenesis, yet how DNA methylation affects JEV infection remains unknown. Here, we show genome-wide DNA methylation profiles in the brains of JEV-infected mice compared to mock-infected mice. JEV can significantly increase the overall DNA methylation levels in JEV-infected mouse brains. A total of 14,781 differentially methylated regions associated genes (DMGs) have been identified. Subsequently, KEGG pathway analysis suggested that DNA methylation modulates the tight junction signaling pathway, which can potentially impact the permeability of the blood-brain barrier (BBB). We demonstrate that hypermethylation of the tight junction gene Afdn promoter inhibited AFDN expression and increased monolayer permeability of mouse brain microvascular endothelial (bEnd.3) cells in an in vitro transwell assay. Collectively, this study reveals that DNA methylation is increased in a murine Japanese encephalitis model and that modulation of Afdn expression promotes BBB permeability.</p>","PeriodicalId":16577,"journal":{"name":"Journal of Neuroinflammation","volume":"21 1","pages":"277"},"PeriodicalIF":9.3000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11520778/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroinflammation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12974-024-03266-6","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Japanese encephalitis virus (JEV) is a neurotropic and neuroinvasive flavivirus causing viral encephalitis, which seriously threatens the development of animal husbandry and human health. DNA methylation is a major epigenetic modification involved in viral pathogenesis, yet how DNA methylation affects JEV infection remains unknown. Here, we show genome-wide DNA methylation profiles in the brains of JEV-infected mice compared to mock-infected mice. JEV can significantly increase the overall DNA methylation levels in JEV-infected mouse brains. A total of 14,781 differentially methylated regions associated genes (DMGs) have been identified. Subsequently, KEGG pathway analysis suggested that DNA methylation modulates the tight junction signaling pathway, which can potentially impact the permeability of the blood-brain barrier (BBB). We demonstrate that hypermethylation of the tight junction gene Afdn promoter inhibited AFDN expression and increased monolayer permeability of mouse brain microvascular endothelial (bEnd.3) cells in an in vitro transwell assay. Collectively, this study reveals that DNA methylation is increased in a murine Japanese encephalitis model and that modulation of Afdn expression promotes BBB permeability.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
日本脑炎病毒诱导的 DNA 甲基化通过调节紧密连接蛋白的表达促进血脑屏障的通透性。
日本脑炎病毒(JEV)是一种具有神经侵袭性和神经侵入性的黄病毒,可引起病毒性脑炎,严重威胁畜牧业的发展和人类健康。DNA 甲基化是病毒致病过程中的主要表观遗传修饰,但 DNA 甲基化如何影响 JEV 感染仍是未知数。在这里,我们展示了与模拟感染小鼠相比,JEV 感染小鼠大脑中的全基因组 DNA 甲基化图谱。JEV能明显增加JEV感染小鼠大脑中DNA甲基化的整体水平。共鉴定出 14781 个差异甲基化区域相关基因(DMGs)。随后,KEGG通路分析表明,DNA甲基化可调节紧密连接信号通路,从而可能影响血脑屏障(BBB)的通透性。我们证明,在体外透孔试验中,紧密连接基因 Afdn 启动子的高甲基化抑制了 AFDN 的表达,并增加了小鼠脑微血管内皮细胞(bEnd.3)的单层渗透性。总之,这项研究揭示了 DNA 甲基化在小鼠日本脑炎模型中会增加,而调节 Afdn 的表达会促进 BBB 的通透性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Neuroinflammation
Journal of Neuroinflammation 医学-神经科学
CiteScore
15.90
自引率
3.20%
发文量
276
审稿时长
1 months
期刊介绍: The Journal of Neuroinflammation is a peer-reviewed, open access publication that emphasizes the interaction between the immune system, particularly the innate immune system, and the nervous system. It covers various aspects, including the involvement of CNS immune mediators like microglia and astrocytes, the cytokines and chemokines they produce, and the influence of peripheral neuro-immune interactions, T cells, monocytes, complement proteins, acute phase proteins, oxidative injury, and related molecular processes. Neuroinflammation is a rapidly expanding field that has significantly enhanced our knowledge of chronic neurological diseases. It attracts researchers from diverse disciplines such as pathology, biochemistry, molecular biology, genetics, clinical medicine, and epidemiology. Substantial contributions to this field have been made through studies involving populations, patients, postmortem tissues, animal models, and in vitro systems. The Journal of Neuroinflammation consolidates research that centers around common pathogenic processes. It serves as a platform for integrative reviews and commentaries in this field.
期刊最新文献
CCR2 restricts IFN-γ production by hippocampal CD8 TRM cells that impair learning and memory during recovery from WNV encephalitis. Th17 and effector CD8 T cells relate to disease progression in amyotrophic lateral sclerosis: a case control study. Accumulated BCAAs and BCKAs contribute to the HFD-induced deterioration of Alzheimer's disease via a dysfunctional TREM2-related reduction in microglial β-amyloid clearance. Prostanoid signaling in retinal cells elicits inflammatory responses relevant to early-stage diabetic retinopathy. Regulatory T cell expansion prevents retinal degeneration in type 2 diabetes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1