Therapeutic potential of targeting the IRF2/POSTN/Notch1 axis in nucleus pulposus cells for intervertebral disc degeneration.

IF 9.3 1区 医学 Q1 IMMUNOLOGY Journal of Neuroinflammation Pub Date : 2025-01-22 DOI:10.1186/s12974-025-03335-4
Daxue Zhu, Zhaoheng Wang, Shijie Chen, Yanhu Li, Xuewen Kang
{"title":"Therapeutic potential of targeting the IRF2/POSTN/Notch1 axis in nucleus pulposus cells for intervertebral disc degeneration.","authors":"Daxue Zhu, Zhaoheng Wang, Shijie Chen, Yanhu Li, Xuewen Kang","doi":"10.1186/s12974-025-03335-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Intervertebral disc degeneration (IDD) is a leading cause of low back pain, often linked to inflammation and pyroptosis in nucleus pulposus (NP) cells. The role of Periostin (POSTN) in IDD remains unclear.</p><p><strong>Objective: </strong>This study aims to investigate the influence of POSTN on pyroptosis and NLRP3 inflammasome activation in NP cells during IDD.</p><p><strong>Methods: </strong>IVD samples were collected from patients undergoing spinal surgery and classified according to the Pfirrmann grading system. Human NP cells were cultured and treated with IL-1β to induce a pyroptotic phenotype. Western blotting, Immunofluorescence (IF), and immunohistochemistry (IHC) assessed the expression levels of relevant proteins. Chromatin immunoprecipitation (ChIP) and luciferase reporter assays verified the binding of IRF2 to the POSTN and GSDMD promoters and evaluated the activation levels of target genes. The severity of IDD was evaluated using MRI and histological analysis.</p><p><strong>Results: </strong>Deletion of POSTN significantly alleviated IDD by suppressing NLRP3 inflammasome activity and pyroptosis in NP cells. POSTN was found to aggravate NP cell pyroptosis by activating the NLRP3 inflammasome through the NF-κB (P65) and cGAS/STING signaling pathways. Furthermore, POSTN interacted with Notch1 to induce NLRP3 expression. IRF2 was identified as a regulator of POSTN at the transcriptional level, contributing to NLRP3 activation and NP cell pyroptosis. IRF2 also directly induced the transcriptional expression of GSDMD, mediating pyroptosis in NP cells. Chemical screening identified Glucosyringic acid (GA) as a direct inhibitor of POSTN, which delayed IDD progression.</p><p><strong>Conclusion: </strong>The study elucidates the pivotal role of POSTN in mediating NP cell pyroptosis through the NLRP3 inflammasome and highlights GA as a promising therapeutic candidate for IDD. These findings provide new insights into the molecular mechanisms of IDD and potential avenues for treatment.</p>","PeriodicalId":16577,"journal":{"name":"Journal of Neuroinflammation","volume":"22 1","pages":"13"},"PeriodicalIF":9.3000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11755837/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroinflammation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12974-025-03335-4","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Intervertebral disc degeneration (IDD) is a leading cause of low back pain, often linked to inflammation and pyroptosis in nucleus pulposus (NP) cells. The role of Periostin (POSTN) in IDD remains unclear.

Objective: This study aims to investigate the influence of POSTN on pyroptosis and NLRP3 inflammasome activation in NP cells during IDD.

Methods: IVD samples were collected from patients undergoing spinal surgery and classified according to the Pfirrmann grading system. Human NP cells were cultured and treated with IL-1β to induce a pyroptotic phenotype. Western blotting, Immunofluorescence (IF), and immunohistochemistry (IHC) assessed the expression levels of relevant proteins. Chromatin immunoprecipitation (ChIP) and luciferase reporter assays verified the binding of IRF2 to the POSTN and GSDMD promoters and evaluated the activation levels of target genes. The severity of IDD was evaluated using MRI and histological analysis.

Results: Deletion of POSTN significantly alleviated IDD by suppressing NLRP3 inflammasome activity and pyroptosis in NP cells. POSTN was found to aggravate NP cell pyroptosis by activating the NLRP3 inflammasome through the NF-κB (P65) and cGAS/STING signaling pathways. Furthermore, POSTN interacted with Notch1 to induce NLRP3 expression. IRF2 was identified as a regulator of POSTN at the transcriptional level, contributing to NLRP3 activation and NP cell pyroptosis. IRF2 also directly induced the transcriptional expression of GSDMD, mediating pyroptosis in NP cells. Chemical screening identified Glucosyringic acid (GA) as a direct inhibitor of POSTN, which delayed IDD progression.

Conclusion: The study elucidates the pivotal role of POSTN in mediating NP cell pyroptosis through the NLRP3 inflammasome and highlights GA as a promising therapeutic candidate for IDD. These findings provide new insights into the molecular mechanisms of IDD and potential avenues for treatment.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Neuroinflammation
Journal of Neuroinflammation 医学-神经科学
CiteScore
15.90
自引率
3.20%
发文量
276
审稿时长
1 months
期刊介绍: The Journal of Neuroinflammation is a peer-reviewed, open access publication that emphasizes the interaction between the immune system, particularly the innate immune system, and the nervous system. It covers various aspects, including the involvement of CNS immune mediators like microglia and astrocytes, the cytokines and chemokines they produce, and the influence of peripheral neuro-immune interactions, T cells, monocytes, complement proteins, acute phase proteins, oxidative injury, and related molecular processes. Neuroinflammation is a rapidly expanding field that has significantly enhanced our knowledge of chronic neurological diseases. It attracts researchers from diverse disciplines such as pathology, biochemistry, molecular biology, genetics, clinical medicine, and epidemiology. Substantial contributions to this field have been made through studies involving populations, patients, postmortem tissues, animal models, and in vitro systems. The Journal of Neuroinflammation consolidates research that centers around common pathogenic processes. It serves as a platform for integrative reviews and commentaries in this field.
期刊最新文献
Characteristics of TSPO expression in marmoset EAE. Sex chromosomes and sex hormones differently shape microglial properties during normal physiological conditions in the adult mouse hippocampus. Targeting NF-kappaB-inducing kinase shapes B-cell homeostasis in myasthenia gravis. Cross-species comparisons between pigs and mice reveal conserved sex-specific intraspinal inflammatory responses after spinal cord injury. Therapeutic potential of targeting the IRF2/POSTN/Notch1 axis in nucleus pulposus cells for intervertebral disc degeneration.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1