Irene Falk, Dragan Maric, Emily Leibovitch, Pascal Sati, Jennifer Lefeuvre, Nicholas J Luciano, Joseph Guy, Seung-Kwon Ha, David R Owen, Franklin Aigbirhio, Paul M Matthews, Daniel S Reich, Steven Jacobson
{"title":"Characteristics of TSPO expression in marmoset EAE.","authors":"Irene Falk, Dragan Maric, Emily Leibovitch, Pascal Sati, Jennifer Lefeuvre, Nicholas J Luciano, Joseph Guy, Seung-Kwon Ha, David R Owen, Franklin Aigbirhio, Paul M Matthews, Daniel S Reich, Steven Jacobson","doi":"10.1186/s12974-025-03343-4","DOIUrl":null,"url":null,"abstract":"<p><p>Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system (CNS) and is a leading non-traumatic cause of disability in young adults. The 18 kDa Translocator Protein (TSPO) is a mitochondrial protein and positron emission tomography (PET)-imaging target that is highly expressed in MS brain lesions. It is used as an inflammatory biomarker and has been proposed as a therapeutic target. However, its specific pathological significance in humans is not well understood. Experimental autoimmune encephalomyelitis (EAE) in the common marmoset is a well-established primate model of MS. Studying TSPO expression in this model will enhance our understanding of its expression in MS. This study therefore characterizes patterns of TSPO expression in fixed CNS tissues from one non-EAE control marmoset and 8 EAE marmosets using multiplex immunofluorescence. In control CNS tissue, we find that TSPO is expressed in the leptomeninges, ependyma, and over two-thirds of Iba1 + microglia, but not astrocytes or neurons. In Iba1 + cells in both control and acute EAE tissue, we find that TSPO is co-expressed with markers of antigen presentation (CD74), early activation (MRP14), phagocytosis (CD163) and anti-inflammatory phenotype (Arg1); a high level of TSPO expression is not restricted to a particular microglial phenotype. While TSPO is expressed in over 88% of activated Iba1 + cells in acute lesions in marmoset EAE, it also is sometimes observed in subsets of astrocytes and neurons. Additionally, we find the percentage of Iba1 + cells expressing TSPO declines significantly in lesions > 5 months old and may be as low as 13% in chronic lesions. However, we also find increased astrocytic TSPO expression in chronic-appearing lesions with astrogliosis. Finally, we find expression of TSPO in a subset of neurons, most frequently GLS2 + glutamatergic neurons. The shift in TSPO expression from Iba + microglia/macrophages to astrocytes over time is similar to patterns suggested by earlier neuropathology studies in MS. Thus, marmoset EAE appears to be a clinically relevant model for the study of TSPO in immune dysregulation in human disease.</p>","PeriodicalId":16577,"journal":{"name":"Journal of Neuroinflammation","volume":"22 1","pages":"19"},"PeriodicalIF":9.3000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroinflammation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12974-025-03343-4","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system (CNS) and is a leading non-traumatic cause of disability in young adults. The 18 kDa Translocator Protein (TSPO) is a mitochondrial protein and positron emission tomography (PET)-imaging target that is highly expressed in MS brain lesions. It is used as an inflammatory biomarker and has been proposed as a therapeutic target. However, its specific pathological significance in humans is not well understood. Experimental autoimmune encephalomyelitis (EAE) in the common marmoset is a well-established primate model of MS. Studying TSPO expression in this model will enhance our understanding of its expression in MS. This study therefore characterizes patterns of TSPO expression in fixed CNS tissues from one non-EAE control marmoset and 8 EAE marmosets using multiplex immunofluorescence. In control CNS tissue, we find that TSPO is expressed in the leptomeninges, ependyma, and over two-thirds of Iba1 + microglia, but not astrocytes or neurons. In Iba1 + cells in both control and acute EAE tissue, we find that TSPO is co-expressed with markers of antigen presentation (CD74), early activation (MRP14), phagocytosis (CD163) and anti-inflammatory phenotype (Arg1); a high level of TSPO expression is not restricted to a particular microglial phenotype. While TSPO is expressed in over 88% of activated Iba1 + cells in acute lesions in marmoset EAE, it also is sometimes observed in subsets of astrocytes and neurons. Additionally, we find the percentage of Iba1 + cells expressing TSPO declines significantly in lesions > 5 months old and may be as low as 13% in chronic lesions. However, we also find increased astrocytic TSPO expression in chronic-appearing lesions with astrogliosis. Finally, we find expression of TSPO in a subset of neurons, most frequently GLS2 + glutamatergic neurons. The shift in TSPO expression from Iba + microglia/macrophages to astrocytes over time is similar to patterns suggested by earlier neuropathology studies in MS. Thus, marmoset EAE appears to be a clinically relevant model for the study of TSPO in immune dysregulation in human disease.
期刊介绍:
The Journal of Neuroinflammation is a peer-reviewed, open access publication that emphasizes the interaction between the immune system, particularly the innate immune system, and the nervous system. It covers various aspects, including the involvement of CNS immune mediators like microglia and astrocytes, the cytokines and chemokines they produce, and the influence of peripheral neuro-immune interactions, T cells, monocytes, complement proteins, acute phase proteins, oxidative injury, and related molecular processes.
Neuroinflammation is a rapidly expanding field that has significantly enhanced our knowledge of chronic neurological diseases. It attracts researchers from diverse disciplines such as pathology, biochemistry, molecular biology, genetics, clinical medicine, and epidemiology. Substantial contributions to this field have been made through studies involving populations, patients, postmortem tissues, animal models, and in vitro systems.
The Journal of Neuroinflammation consolidates research that centers around common pathogenic processes. It serves as a platform for integrative reviews and commentaries in this field.