{"title":"Targeting NF-kappaB-inducing kinase shapes B-cell homeostasis in myasthenia gravis.","authors":"Xiaoyu Huang, Zhouao Zhang, Zhouyi Wang, Tiancheng Luo, Mingjin Yang, Xinyan Guo, Xue Du, Tianyu Ma, Yong Zhang","doi":"10.1186/s12974-025-03342-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>B cell immune dysregulation plays a critical role in myasthenia gravis (MG). However, targeted B-cell therapy such as rituximab may result in long-term peripheral B cell clearance and allow for the survival of plasma cells, contributing to frequent infections and relapses. Therefore, we aimed to identify potential novel therapeutic targets that preserve part of B cell function while inhibiting antibody-secreting cells (ASCs).</p><p><strong>Methods: </strong>The transcriptome of sorted CD19<sup>+</sup>B cells obtained from MG patients in active and remission state was performed by RNA sequencing. The hallmark gene NF-kappaB-inducing kinase (NIK/MAP3K14) associated with NF-κB and TNF signaling was identified, and the expression levels of NIK in CD19<sup>+</sup>B cells, CD4<sup>+</sup>T cells and serum from new-onset MG patients and controls were validated by flow cytometry, qPCR and ELISA. In vitro and in vivo, the effects of NIK inhibitor (B022) on the function of CD19<sup>+</sup>B cells and CD4<sup>+</sup>T cells were detected under the MG PBMCs, sorted B cells and experimental autoimmune MG (EAMG) rat model, respectively.</p><p><strong>Results: </strong>The expression levels of NIK were upregulated in CD19<sup>+</sup>B cells, CD4<sup>+</sup>T cells and serum from new-onset MG patients. Notably, increased serum NIK levels were positively correlated with disease severity and decreased with disease remission. NIK inhibitor B022 significantly reduced B-cell activation, proliferation, ASCs differentiation and pathogenic function, as well as CD4<sup>+</sup>T cell activation and Th17 cells differentiation in vitro. Intraperitoneal injection of B022 ameliorated the severity of EAMG rats, and reduced proportion of pathogenic B and T cell subsets, antibody levels and postsynaptic membrane damage.</p><p><strong>Conclusions: </strong>Targeting NIK with small molecule kinase inhibitors can effectively shape B cell homeostasis, and exhibit protective effects in the EAMG rat model, which may be an effective novel treatment strategy for MG.</p>","PeriodicalId":16577,"journal":{"name":"Journal of Neuroinflammation","volume":"22 1","pages":"17"},"PeriodicalIF":9.3000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11759451/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroinflammation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12974-025-03342-5","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: B cell immune dysregulation plays a critical role in myasthenia gravis (MG). However, targeted B-cell therapy such as rituximab may result in long-term peripheral B cell clearance and allow for the survival of plasma cells, contributing to frequent infections and relapses. Therefore, we aimed to identify potential novel therapeutic targets that preserve part of B cell function while inhibiting antibody-secreting cells (ASCs).
Methods: The transcriptome of sorted CD19+B cells obtained from MG patients in active and remission state was performed by RNA sequencing. The hallmark gene NF-kappaB-inducing kinase (NIK/MAP3K14) associated with NF-κB and TNF signaling was identified, and the expression levels of NIK in CD19+B cells, CD4+T cells and serum from new-onset MG patients and controls were validated by flow cytometry, qPCR and ELISA. In vitro and in vivo, the effects of NIK inhibitor (B022) on the function of CD19+B cells and CD4+T cells were detected under the MG PBMCs, sorted B cells and experimental autoimmune MG (EAMG) rat model, respectively.
Results: The expression levels of NIK were upregulated in CD19+B cells, CD4+T cells and serum from new-onset MG patients. Notably, increased serum NIK levels were positively correlated with disease severity and decreased with disease remission. NIK inhibitor B022 significantly reduced B-cell activation, proliferation, ASCs differentiation and pathogenic function, as well as CD4+T cell activation and Th17 cells differentiation in vitro. Intraperitoneal injection of B022 ameliorated the severity of EAMG rats, and reduced proportion of pathogenic B and T cell subsets, antibody levels and postsynaptic membrane damage.
Conclusions: Targeting NIK with small molecule kinase inhibitors can effectively shape B cell homeostasis, and exhibit protective effects in the EAMG rat model, which may be an effective novel treatment strategy for MG.
期刊介绍:
The Journal of Neuroinflammation is a peer-reviewed, open access publication that emphasizes the interaction between the immune system, particularly the innate immune system, and the nervous system. It covers various aspects, including the involvement of CNS immune mediators like microglia and astrocytes, the cytokines and chemokines they produce, and the influence of peripheral neuro-immune interactions, T cells, monocytes, complement proteins, acute phase proteins, oxidative injury, and related molecular processes.
Neuroinflammation is a rapidly expanding field that has significantly enhanced our knowledge of chronic neurological diseases. It attracts researchers from diverse disciplines such as pathology, biochemistry, molecular biology, genetics, clinical medicine, and epidemiology. Substantial contributions to this field have been made through studies involving populations, patients, postmortem tissues, animal models, and in vitro systems.
The Journal of Neuroinflammation consolidates research that centers around common pathogenic processes. It serves as a platform for integrative reviews and commentaries in this field.