{"title":"Orchestrating ROS regulation: coordinated post-translational modification switches in NADPH oxidases.","authors":"Xinyu Zhang, Dingliang Zhang, Chenchen Zhong, Wenli Li, Savithramma P Dinesh-Kumar, Yongliang Zhang","doi":"10.1111/nph.20231","DOIUrl":null,"url":null,"abstract":"<p><p>Reactive oxygen species (ROS) are among the most important signaling molecules, playing a significant role in plant growth, development, and responses to various environmental stresses. Respiratory burst oxidase homologs (RBOHs) are key enzymes in ROS production. Plants tightly regulate the activation and deactivation of RBOHs through various post-translational modifications (PTMs), including phosphorylation, ubiquitination, S-nitrosylation, and persulfidation. These PTMs fine-tune ROS production, ensuring normal plant growth and development while facilitating rapid responses to abiotic and biotic stresses. This review discusses the effects of different PTMs on RBOH function and their biological relevance. Additionally, we examine the evolutionary conservation of PTM sites and emphasize the complex interplay between multiple PTMs regulating RBOHs.</p>","PeriodicalId":48887,"journal":{"name":"New Phytologist","volume":null,"pages":null},"PeriodicalIF":9.4000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Phytologist","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/nph.20231","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
Reactive oxygen species (ROS) are among the most important signaling molecules, playing a significant role in plant growth, development, and responses to various environmental stresses. Respiratory burst oxidase homologs (RBOHs) are key enzymes in ROS production. Plants tightly regulate the activation and deactivation of RBOHs through various post-translational modifications (PTMs), including phosphorylation, ubiquitination, S-nitrosylation, and persulfidation. These PTMs fine-tune ROS production, ensuring normal plant growth and development while facilitating rapid responses to abiotic and biotic stresses. This review discusses the effects of different PTMs on RBOH function and their biological relevance. Additionally, we examine the evolutionary conservation of PTM sites and emphasize the complex interplay between multiple PTMs regulating RBOHs.
期刊介绍:
New Phytologist is a leading publication that showcases exceptional and groundbreaking research in plant science and its practical applications. With a focus on five distinct sections - Physiology & Development, Environment, Interaction, Evolution, and Transformative Plant Biotechnology - the journal covers a wide array of topics ranging from cellular processes to the impact of global environmental changes. We encourage the use of interdisciplinary approaches, and our content is structured to reflect this. Our journal acknowledges the diverse techniques employed in plant science, including molecular and cell biology, functional genomics, modeling, and system-based approaches, across various subfields.