Perylene diimide-derived supramolecules-modified graphene sponge as a high-efficiency solar steam generator

IF 8.3 1区 工程技术 Q1 ENGINEERING, CHEMICAL Desalination Pub Date : 2024-10-22 DOI:10.1016/j.desal.2024.118237
Elif Erçarıkcı , Demet Demirci Gültekin , Ezgi Topçu , Züleyha Kudaş , Murat Alanyalıoğlu , Kader Dağcı Kıranşan
{"title":"Perylene diimide-derived supramolecules-modified graphene sponge as a high-efficiency solar steam generator","authors":"Elif Erçarıkcı ,&nbsp;Demet Demirci Gültekin ,&nbsp;Ezgi Topçu ,&nbsp;Züleyha Kudaş ,&nbsp;Murat Alanyalıoğlu ,&nbsp;Kader Dağcı Kıranşan","doi":"10.1016/j.desal.2024.118237","DOIUrl":null,"url":null,"abstract":"<div><div>Generating steam using solar energy appears to be an effective approach to obtaining clean water, especially from salty water and wastewater, since the sun is a natural and constant source. Compared to many methods, studies in solar steam generation have accelerated due to being highly efficient, sustainable, and low-cost. Graphene sponges (GrSs), possessing structural flexibility and effective photothermal activity, are widely used for this purpose. However, the hydrophobic character of these materials limits their effectiveness in solar steam generators. At this point, we prepared perylene diimide-derived supramolecules (PDI) modified three-dimensional (3D) gradient hydrophobic GrS (PDI/GGrS) as the highly efficient solar thermal converter for the generation of clean water. PDI allowed us to achieve perfect absorption of broad-band sunlight and GGrS facilitated water transport through channels of sponge structure. As a result, PDI/GGrS has achieved a high water evaporation rate of 3.5 kg h<sup>−1</sup> m<sup>−2</sup> with a superior solar thermal conversion efficiency of up to 90 %. This study can provide new possibilities for harvesting solar energy by producing clean water from seawater, wastewater, and even acidic/alkali solutions.</div></div>","PeriodicalId":299,"journal":{"name":"Desalination","volume":"593 ","pages":"Article 118237"},"PeriodicalIF":8.3000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Desalination","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0011916424009482","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Generating steam using solar energy appears to be an effective approach to obtaining clean water, especially from salty water and wastewater, since the sun is a natural and constant source. Compared to many methods, studies in solar steam generation have accelerated due to being highly efficient, sustainable, and low-cost. Graphene sponges (GrSs), possessing structural flexibility and effective photothermal activity, are widely used for this purpose. However, the hydrophobic character of these materials limits their effectiveness in solar steam generators. At this point, we prepared perylene diimide-derived supramolecules (PDI) modified three-dimensional (3D) gradient hydrophobic GrS (PDI/GGrS) as the highly efficient solar thermal converter for the generation of clean water. PDI allowed us to achieve perfect absorption of broad-band sunlight and GGrS facilitated water transport through channels of sponge structure. As a result, PDI/GGrS has achieved a high water evaporation rate of 3.5 kg h−1 m−2 with a superior solar thermal conversion efficiency of up to 90 %. This study can provide new possibilities for harvesting solar energy by producing clean water from seawater, wastewater, and even acidic/alkali solutions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
作为高效太阳能蒸汽发生器的过二亚胺超分子改性石墨烯海绵
利用太阳能产生蒸汽似乎是获取清洁水的有效方法,尤其是从含盐的水和废水中获取清洁水,因为太阳是天然的恒定来源。与许多方法相比,太阳能蒸汽发电因其高效、可持续和低成本而加快了研究的步伐。石墨烯海绵(GrSs)具有结构柔性和有效的光热活性,被广泛用于这一目的。然而,这些材料的疏水性限制了它们在太阳能蒸汽发生器中的有效性。为此,我们制备了过二亚胺衍生超分子(PDI)修饰的三维(3D)梯度疏水 GrS(PDI/GGrS),作为高效太阳能热转换器,用于生产清洁水。PDI 使我们能够实现对宽波段阳光的完美吸收,而 GGrS 则促进了水在海绵结构通道中的传输。因此,PDI/GGrS 的水蒸发率高达 3.5 kg h-1 m-2,太阳能热转换效率高达 90%。这项研究为从海水、废水甚至酸碱溶液中生产清洁水收集太阳能提供了新的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Desalination
Desalination 工程技术-工程:化工
CiteScore
14.60
自引率
20.20%
发文量
619
审稿时长
41 days
期刊介绍: Desalination is a scholarly journal that focuses on the field of desalination materials, processes, and associated technologies. It encompasses a wide range of disciplines and aims to publish exceptional papers in this area. The journal invites submissions that explicitly revolve around water desalting and its applications to various sources such as seawater, groundwater, and wastewater. It particularly encourages research on diverse desalination methods including thermal, membrane, sorption, and hybrid processes. By providing a platform for innovative studies, Desalination aims to advance the understanding and development of desalination technologies, promoting sustainable solutions for water scarcity challenges.
期刊最新文献
Preparation of fully coated PEDOT: PSS film on MXene for high reliability capacitive deionization Echelon extraction of valuable components from salt lake brine substrate Efficient removal of uranium and sulfate in acid contaminated groundwater by flow electrode capacitive deionization Assessment of a pilot continuous freezing desalination system with vacuum-assisted brine extraction Reverse osmosis process combining energy consumption analysis and mass transfer in the concentration of lithium-enriched brine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1