{"title":"Perylene diimide-derived supramolecules-modified graphene sponge as a high-efficiency solar steam generator","authors":"Elif Erçarıkcı , Demet Demirci Gültekin , Ezgi Topçu , Züleyha Kudaş , Murat Alanyalıoğlu , Kader Dağcı Kıranşan","doi":"10.1016/j.desal.2024.118237","DOIUrl":null,"url":null,"abstract":"<div><div>Generating steam using solar energy appears to be an effective approach to obtaining clean water, especially from salty water and wastewater, since the sun is a natural and constant source. Compared to many methods, studies in solar steam generation have accelerated due to being highly efficient, sustainable, and low-cost. Graphene sponges (GrSs), possessing structural flexibility and effective photothermal activity, are widely used for this purpose. However, the hydrophobic character of these materials limits their effectiveness in solar steam generators. At this point, we prepared perylene diimide-derived supramolecules (PDI) modified three-dimensional (3D) gradient hydrophobic GrS (PDI/GGrS) as the highly efficient solar thermal converter for the generation of clean water. PDI allowed us to achieve perfect absorption of broad-band sunlight and GGrS facilitated water transport through channels of sponge structure. As a result, PDI/GGrS has achieved a high water evaporation rate of 3.5 kg h<sup>−1</sup> m<sup>−2</sup> with a superior solar thermal conversion efficiency of up to 90 %. This study can provide new possibilities for harvesting solar energy by producing clean water from seawater, wastewater, and even acidic/alkali solutions.</div></div>","PeriodicalId":299,"journal":{"name":"Desalination","volume":"593 ","pages":"Article 118237"},"PeriodicalIF":8.3000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Desalination","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0011916424009482","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Generating steam using solar energy appears to be an effective approach to obtaining clean water, especially from salty water and wastewater, since the sun is a natural and constant source. Compared to many methods, studies in solar steam generation have accelerated due to being highly efficient, sustainable, and low-cost. Graphene sponges (GrSs), possessing structural flexibility and effective photothermal activity, are widely used for this purpose. However, the hydrophobic character of these materials limits their effectiveness in solar steam generators. At this point, we prepared perylene diimide-derived supramolecules (PDI) modified three-dimensional (3D) gradient hydrophobic GrS (PDI/GGrS) as the highly efficient solar thermal converter for the generation of clean water. PDI allowed us to achieve perfect absorption of broad-band sunlight and GGrS facilitated water transport through channels of sponge structure. As a result, PDI/GGrS has achieved a high water evaporation rate of 3.5 kg h−1 m−2 with a superior solar thermal conversion efficiency of up to 90 %. This study can provide new possibilities for harvesting solar energy by producing clean water from seawater, wastewater, and even acidic/alkali solutions.
期刊介绍:
Desalination is a scholarly journal that focuses on the field of desalination materials, processes, and associated technologies. It encompasses a wide range of disciplines and aims to publish exceptional papers in this area.
The journal invites submissions that explicitly revolve around water desalting and its applications to various sources such as seawater, groundwater, and wastewater. It particularly encourages research on diverse desalination methods including thermal, membrane, sorption, and hybrid processes.
By providing a platform for innovative studies, Desalination aims to advance the understanding and development of desalination technologies, promoting sustainable solutions for water scarcity challenges.