Fe2O3-decorated multiwall carbon nanotube composites for boosted microwave absorption

IF 4.3 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Chemistry and Physics Pub Date : 2024-10-24 DOI:10.1016/j.matchemphys.2024.130066
Jin-Bo Cheng , Li-Peng Meng , Xin Huang , Si-Yi Luo , Hai-Bo Zhao , Chun-Xia Zhao , Hao-Ran Huang , Hui Li , Yuan-Peng Wu
{"title":"Fe2O3-decorated multiwall carbon nanotube composites for boosted microwave absorption","authors":"Jin-Bo Cheng ,&nbsp;Li-Peng Meng ,&nbsp;Xin Huang ,&nbsp;Si-Yi Luo ,&nbsp;Hai-Bo Zhao ,&nbsp;Chun-Xia Zhao ,&nbsp;Hao-Ran Huang ,&nbsp;Hui Li ,&nbsp;Yuan-Peng Wu","doi":"10.1016/j.matchemphys.2024.130066","DOIUrl":null,"url":null,"abstract":"<div><div>Developing microwave absorption (MA) materials with a strong absorption ability over a wide bandwidth through a simple and environmentally friendly approach remains a tremendous challenge. Herein, we propose to use an Fe<sup>3+</sup>–tannic acid framework to assist the dispersion of multi-walled carbon nanotubes (MWCNTs) and successfully prepare MWCNTs/porous carbon/α-Fe<sub>2</sub>O<sub>3</sub> composites through freeze-drying and subsequent heat treatment. The dielectric properties and MA performance can be regulated by the heat treatment temperature, which leads to tunable crystalline structure, composition, and graphitization degree of MWCNTs. Consequently, the MWCNTs/porous carbon/α-Fe<sub>2</sub>O<sub>3</sub> composite heat-treated at 300 °C exhibits a high reflection loss (RL) of −58.9 dB and an effective absorption bandwidth (5.28 GHz) with a matched thickness of 2.26 mm at a filler proportion of only 5 wt%, and the related frequency bandwidth with RL below −10 dB reaches 14.3 GHz at a thickness of 2–5 mm. In conclusion, the balance between conduction and polarization loss endows the composite with excellent impedance matching and boosting MA performance. This study offers a guideline for fabricating excellent MA materials through a simple, environmentally friendly method.</div></div>","PeriodicalId":18227,"journal":{"name":"Materials Chemistry and Physics","volume":"329 ","pages":"Article 130066"},"PeriodicalIF":4.3000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Chemistry and Physics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0254058424011945","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Developing microwave absorption (MA) materials with a strong absorption ability over a wide bandwidth through a simple and environmentally friendly approach remains a tremendous challenge. Herein, we propose to use an Fe3+–tannic acid framework to assist the dispersion of multi-walled carbon nanotubes (MWCNTs) and successfully prepare MWCNTs/porous carbon/α-Fe2O3 composites through freeze-drying and subsequent heat treatment. The dielectric properties and MA performance can be regulated by the heat treatment temperature, which leads to tunable crystalline structure, composition, and graphitization degree of MWCNTs. Consequently, the MWCNTs/porous carbon/α-Fe2O3 composite heat-treated at 300 °C exhibits a high reflection loss (RL) of −58.9 dB and an effective absorption bandwidth (5.28 GHz) with a matched thickness of 2.26 mm at a filler proportion of only 5 wt%, and the related frequency bandwidth with RL below −10 dB reaches 14.3 GHz at a thickness of 2–5 mm. In conclusion, the balance between conduction and polarization loss endows the composite with excellent impedance matching and boosting MA performance. This study offers a guideline for fabricating excellent MA materials through a simple, environmentally friendly method.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于增强微波吸收的 Fe2O3 装饰多壁碳纳米管复合材料
通过简单、环保的方法开发在宽带宽范围内具有强大吸收能力的微波吸收(MA)材料仍然是一个巨大的挑战。在此,我们提出使用 Fe3+ 单宁酸框架来辅助多壁碳纳米管(MWCNTs)的分散,并通过冷冻干燥和随后的热处理成功制备了多壁碳纳米管/多孔碳/α-Fe2O3 复合材料。热处理温度可调节介电性能和 MA 性能,从而实现 MWCNTs 结晶结构、成分和石墨化程度的可调。因此,在 300 °C 下热处理的 MWCNTs/多孔碳/α-Fe2O3 复合材料表现出 -58.9 dB 的高反射损耗(RL)和有效吸收带宽(5.28 GHz),匹配厚度为 2.26 mm,填料比例仅为 5 wt%,RL 低于 -10 dB 的相关频率带宽达到 14.3 GHz,厚度为 2-5 mm。总之,传导损耗和极化损耗之间的平衡使复合材料具有出色的阻抗匹配和增强的 MA 性能。这项研究为通过简单、环保的方法制造出色的 MA 材料提供了指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials Chemistry and Physics
Materials Chemistry and Physics 工程技术-材料科学:综合
CiteScore
8.70
自引率
4.30%
发文量
1515
审稿时长
69 days
期刊介绍: Materials Chemistry and Physics is devoted to short communications, full-length research papers and feature articles on interrelationships among structure, properties, processing and performance of materials. The Editors welcome manuscripts on thin films, surface and interface science, materials degradation and reliability, metallurgy, semiconductors and optoelectronic materials, fine ceramics, magnetics, superconductors, specialty polymers, nano-materials and composite materials.
期刊最新文献
Synergistic effects of Carbon@MoS2 core-shell nanostructures on charge dynamics for future optoelectronic applications Optimization of atomic layer deposited Pt-shell thickness of PtCu3@Pt/C catalyst for oxygen reduction reaction Influence of core fluorination on the phase properties of fan-like azobenzene based supramolecules, their cis-trans photoisomerization and photoluminescence dynamics Investigation of structural, thermal, and electrical properties of sodium-doped oxynitride glass-ceramics Synthesis and application of Ho³⁺ doped BaGd₂ZnO₅ nanophosphors for enhanced latent fingerprint development and poroscopy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1