Ju Yao, Qiyang Tan, Jeffrey Venezuela, Andrej Atrens, Ming-Xing Zhang
{"title":"Additive manufacturing of high-strength low-alloy AISI 4340 steel with an optimal strength-ductility-toughness trade-off","authors":"Ju Yao, Qiyang Tan, Jeffrey Venezuela, Andrej Atrens, Ming-Xing Zhang","doi":"10.1016/j.addma.2024.104496","DOIUrl":null,"url":null,"abstract":"<div><div>Additive manufacturing (AM) has revolutionised steel part fabrication, yet not all steels are amenable to its unique solidification features, characterised by cyclic and rapid heating/cooling, and directional solidification. These conditions often result in challenges such as columnar grain formation, microstructural heterogeneity, and consequently, inferior mechanical performance, brittleness and severe anisotropy in particular. Recent studies have adopted inoculation or post-fabrication treatments to address this issue, but often entailing extra cost and processing time. This study aims to verify that some steels such as AISI 4340 steel are inherently compatible to AM, producing components that are innately robust and ready for use in the as-built state. The medium carbon content and low alloying element concentration enable AM processing to produce a uniform and refined bainite microstructure with minimal elemental segregation, avoiding the formation of unstable retained austenite. The high AM-processability of this steel is demonstrated by achieving high densification (>99.9 %) across a broad processing window, which allows precise microstructural control via proper tunning the processing parameter modifications, inducing a transition from upper bainite to lower bainite dominance, to tailor mechanical properties for specific applications. The as AM-fabricated AISI 4340 steel exhibits a good combination of strength, ductility, and toughness, manifested by a yield strength range from 1240 to 1370 MPa, an ultimate tensile strength from 1360 to 1740 MPa, an elongation from 7 % to 14 %, and an impact toughness range of 11–44 J. The mechanical properties of the AM-fabricated 4340 steel are comparable to those of the wrought counterpart and superior to the majority of other AM-fabricated steels. This research reveals the high potential of AM to process high-strength low-alloy steels.</div></div>","PeriodicalId":7172,"journal":{"name":"Additive manufacturing","volume":"94 ","pages":"Article 104496"},"PeriodicalIF":10.3000,"publicationDate":"2024-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Additive manufacturing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214860424005426","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
Additive manufacturing (AM) has revolutionised steel part fabrication, yet not all steels are amenable to its unique solidification features, characterised by cyclic and rapid heating/cooling, and directional solidification. These conditions often result in challenges such as columnar grain formation, microstructural heterogeneity, and consequently, inferior mechanical performance, brittleness and severe anisotropy in particular. Recent studies have adopted inoculation or post-fabrication treatments to address this issue, but often entailing extra cost and processing time. This study aims to verify that some steels such as AISI 4340 steel are inherently compatible to AM, producing components that are innately robust and ready for use in the as-built state. The medium carbon content and low alloying element concentration enable AM processing to produce a uniform and refined bainite microstructure with minimal elemental segregation, avoiding the formation of unstable retained austenite. The high AM-processability of this steel is demonstrated by achieving high densification (>99.9 %) across a broad processing window, which allows precise microstructural control via proper tunning the processing parameter modifications, inducing a transition from upper bainite to lower bainite dominance, to tailor mechanical properties for specific applications. The as AM-fabricated AISI 4340 steel exhibits a good combination of strength, ductility, and toughness, manifested by a yield strength range from 1240 to 1370 MPa, an ultimate tensile strength from 1360 to 1740 MPa, an elongation from 7 % to 14 %, and an impact toughness range of 11–44 J. The mechanical properties of the AM-fabricated 4340 steel are comparable to those of the wrought counterpart and superior to the majority of other AM-fabricated steels. This research reveals the high potential of AM to process high-strength low-alloy steels.
期刊介绍:
Additive Manufacturing stands as a peer-reviewed journal dedicated to delivering high-quality research papers and reviews in the field of additive manufacturing, serving both academia and industry leaders. The journal's objective is to recognize the innovative essence of additive manufacturing and its diverse applications, providing a comprehensive overview of current developments and future prospects.
The transformative potential of additive manufacturing technologies in product design and manufacturing is poised to disrupt traditional approaches. In response to this paradigm shift, a distinctive and comprehensive publication outlet was essential. Additive Manufacturing fulfills this need, offering a platform for engineers, materials scientists, and practitioners across academia and various industries to document and share innovations in these evolving technologies.