Efficient sensitivity analysis of the thermal profile in powder bed fusion of metals using hypercomplex automatic differentiation finite element method
Juan-Sebastian Rincon-Tabares , Mauricio Aristizabal , Matthew Balcer , Arturo Montoya , Harry Millwater , David Restrepo
{"title":"Efficient sensitivity analysis of the thermal profile in powder bed fusion of metals using hypercomplex automatic differentiation finite element method","authors":"Juan-Sebastian Rincon-Tabares , Mauricio Aristizabal , Matthew Balcer , Arturo Montoya , Harry Millwater , David Restrepo","doi":"10.1016/j.addma.2024.104488","DOIUrl":null,"url":null,"abstract":"<div><div>Rapid cyclic temperature fluctuation occurring in powder bed fusion of metals using a laser beam (PBF-LB/M) influences the formation of flaws in printed parts. Consequently, there is a pressing need to enhance the quality of printed parts by developing innovative methodologies that can predict thermal histories and help uncover the intricate relationships between process parameters and thermal profiles. Sensitivity Analysis (SA) emerges as an essential tool for this, offering the potential for process optimization and enhanced quality control. Nonetheless, conventional SA methodologies often incur in excessive computational costs and potential numerical approximation errors. To address this technical challenge, we present a novel method for SA that integrates the HYPercomplex-based Automatic Differentiation (HYPAD) technique with transient thermal simulations conducted via the finite element method (FEM). Leveraging this methodology, we efficiently and accurately perform SA for PBF-LB/M processes in a post-processing step. Compared to traditional methods like Finite Differences (FD), HYPAD-FEM required 96 % less computational time for obtaining sensitivities for 22 process parameters, under a comparative study conducted within the context of the 2018–02 AM benchmark of the National Institute of Standards and Technology. In summary, HYPAD-FEM offers superior efficiency and accuracy in SA over conventional methods, delivering the best sensitivity of a model without the need for step-size selection and problem or parameter-based implementations.</div></div>","PeriodicalId":7172,"journal":{"name":"Additive manufacturing","volume":"94 ","pages":"Article 104488"},"PeriodicalIF":10.3000,"publicationDate":"2024-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Additive manufacturing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214860424005347","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
Rapid cyclic temperature fluctuation occurring in powder bed fusion of metals using a laser beam (PBF-LB/M) influences the formation of flaws in printed parts. Consequently, there is a pressing need to enhance the quality of printed parts by developing innovative methodologies that can predict thermal histories and help uncover the intricate relationships between process parameters and thermal profiles. Sensitivity Analysis (SA) emerges as an essential tool for this, offering the potential for process optimization and enhanced quality control. Nonetheless, conventional SA methodologies often incur in excessive computational costs and potential numerical approximation errors. To address this technical challenge, we present a novel method for SA that integrates the HYPercomplex-based Automatic Differentiation (HYPAD) technique with transient thermal simulations conducted via the finite element method (FEM). Leveraging this methodology, we efficiently and accurately perform SA for PBF-LB/M processes in a post-processing step. Compared to traditional methods like Finite Differences (FD), HYPAD-FEM required 96 % less computational time for obtaining sensitivities for 22 process parameters, under a comparative study conducted within the context of the 2018–02 AM benchmark of the National Institute of Standards and Technology. In summary, HYPAD-FEM offers superior efficiency and accuracy in SA over conventional methods, delivering the best sensitivity of a model without the need for step-size selection and problem or parameter-based implementations.
期刊介绍:
Additive Manufacturing stands as a peer-reviewed journal dedicated to delivering high-quality research papers and reviews in the field of additive manufacturing, serving both academia and industry leaders. The journal's objective is to recognize the innovative essence of additive manufacturing and its diverse applications, providing a comprehensive overview of current developments and future prospects.
The transformative potential of additive manufacturing technologies in product design and manufacturing is poised to disrupt traditional approaches. In response to this paradigm shift, a distinctive and comprehensive publication outlet was essential. Additive Manufacturing fulfills this need, offering a platform for engineers, materials scientists, and practitioners across academia and various industries to document and share innovations in these evolving technologies.