MANGOever: An optimization framework for the long-term planning and operations of integrated electric vehicle and building energy systems

IF 13 Q1 ENERGY & FUELS Advances in Applied Energy Pub Date : 2024-10-22 DOI:10.1016/j.adapen.2024.100193
Alicia Lerbinger , Siobhan Powell , Georgios Mavromatidis
{"title":"MANGOever: An optimization framework for the long-term planning and operations of integrated electric vehicle and building energy systems","authors":"Alicia Lerbinger ,&nbsp;Siobhan Powell ,&nbsp;Georgios Mavromatidis","doi":"10.1016/j.adapen.2024.100193","DOIUrl":null,"url":null,"abstract":"<div><div>The growing electrification of heating and mobility has increased the interdependence of these two sectors and introduced a new coupling with the electricity sector. However, existing studies on local energy planning often focus solely on solutions to meet buildings’ energy demands, neglecting or highly simplifying new mobility demands. Here, we address this gap by introducing MANGOever (Multi-stAge eNerGy Optimization for <strong>e</strong>lectric <strong>v</strong>ehicles and <strong>e</strong>nergy <strong>r</strong>etrofits), a comprehensive optimization framework for long-term co-planning of building energy systems and electric vehicle (EV) charging infrastructure. The framework optimizes multi-stage investments and operational strategies to minimize system costs and CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> emissions over a multi-year horizon, considering the stochastic nature of EV charging based on observed driver habits and travel patterns. Applying the model to a case study of a multi-family home in Switzerland reveals significant synergies between EV charging and the management of solar photovoltaic generation. The results underscore the importance of considering habit-based EV charging behavior in the model and demonstrate how diverse EV plug-in behaviors can be leveraged to maximize the use of midday solar production and reduce emissions. These findings emphasize the need for integrated planning of these sectors to achieve a cost-effective, low-carbon energy transition.</div></div>","PeriodicalId":34615,"journal":{"name":"Advances in Applied Energy","volume":"16 ","pages":"Article 100193"},"PeriodicalIF":13.0000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Energy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666792424000313","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The growing electrification of heating and mobility has increased the interdependence of these two sectors and introduced a new coupling with the electricity sector. However, existing studies on local energy planning often focus solely on solutions to meet buildings’ energy demands, neglecting or highly simplifying new mobility demands. Here, we address this gap by introducing MANGOever (Multi-stAge eNerGy Optimization for electric vehicles and energy retrofits), a comprehensive optimization framework for long-term co-planning of building energy systems and electric vehicle (EV) charging infrastructure. The framework optimizes multi-stage investments and operational strategies to minimize system costs and CO2 emissions over a multi-year horizon, considering the stochastic nature of EV charging based on observed driver habits and travel patterns. Applying the model to a case study of a multi-family home in Switzerland reveals significant synergies between EV charging and the management of solar photovoltaic generation. The results underscore the importance of considering habit-based EV charging behavior in the model and demonstrate how diverse EV plug-in behaviors can be leveraged to maximize the use of midday solar production and reduce emissions. These findings emphasize the need for integrated planning of these sectors to achieve a cost-effective, low-carbon energy transition.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MANGOever:集成电动汽车和建筑能源系统长期规划和运营的优化框架
供暖和交通日益电气化,增加了这两个部门的相互依存性,并与电力部门产生了新的联系。然而,现有的地方能源规划研究往往只关注满足建筑物能源需求的解决方案,忽视或高度简化了新的交通需求。在此,我们引入了 MANGOever(电动汽车和能源改造的多阶段 eNerGy 优化)来弥补这一不足,它是一个综合优化框架,用于建筑能源系统和电动汽车(EV)充电基础设施的长期共同规划。该框架根据观察到的驾驶员习惯和出行模式,考虑到电动汽车充电的随机性,对多阶段投资和运营策略进行优化,以在多年期限内最大限度地降低系统成本和二氧化碳排放量。将该模型应用于瑞士的一个多户住宅案例研究,发现电动汽车充电与太阳能光伏发电管理之间存在显著的协同效应。研究结果强调了在模型中考虑基于习惯的电动汽车充电行为的重要性,并展示了如何利用不同的电动汽车插电行为最大限度地利用中午的太阳能发电并减少排放。这些发现强调了对这些部门进行综合规划的必要性,以实现具有成本效益的低碳能源转型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advances in Applied Energy
Advances in Applied Energy Energy-General Energy
CiteScore
23.90
自引率
0.00%
发文量
36
审稿时长
21 days
期刊最新文献
Digitalization of urban multi-energy systems – Advances in digital twin applications across life-cycle phases Multi-scale electricity consumption prediction model based on land use and interpretable machine learning: A case study of China Green light for bidirectional charging? Unveiling grid repercussions and life cycle impacts Hydrogen production via solid oxide electrolysis: Balancing environmental issues and material criticality MANGOever: An optimization framework for the long-term planning and operations of integrated electric vehicle and building energy systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1