{"title":"Optimized Cu/Fe doped Boron Nitride Nanoribbons as nanoscale interconnect: DFT Investigation","authors":"Mandar Jatkar, Mallikarjun P.Y.","doi":"10.1016/j.mssp.2024.109050","DOIUrl":null,"url":null,"abstract":"<div><div>This study incorpates Density Functional Theory (DFT) to investigate the influence of copper (Cu) and Iron (Fe) atom passivation on Boron Nitride Nanoribbons (ZBNRs). Through meticulous analysis, we explore their electronic and stuctrural properties, particularly focusing on edge states. 2Fe ZBNR shows the highest stability (−9.12eV) as compared other configurations. Calculation reveals that increased stability with escalating atom concentration. Band structure and Density of States (DOS) are examined, along with the viability of passivated ZBNRs as a application of metal interconnects. 1Fe ZBNR gives the highest Fermi energy((-4.46eV). Using different configurations of ZBNRs, we model nanoscale interconnect application. We analyze their efficacy interms of delay and other parameters. 1Cu ZBNR shows lowest interconnect delay (26.3us) as compared to other configurations. This exploration contributes to understanding the potential of BNRs in nanoelectronics interconnect.</div></div>","PeriodicalId":18240,"journal":{"name":"Materials Science in Semiconductor Processing","volume":"186 ","pages":"Article 109050"},"PeriodicalIF":4.2000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science in Semiconductor Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369800124009466","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This study incorpates Density Functional Theory (DFT) to investigate the influence of copper (Cu) and Iron (Fe) atom passivation on Boron Nitride Nanoribbons (ZBNRs). Through meticulous analysis, we explore their electronic and stuctrural properties, particularly focusing on edge states. 2Fe ZBNR shows the highest stability (−9.12eV) as compared other configurations. Calculation reveals that increased stability with escalating atom concentration. Band structure and Density of States (DOS) are examined, along with the viability of passivated ZBNRs as a application of metal interconnects. 1Fe ZBNR gives the highest Fermi energy((-4.46eV). Using different configurations of ZBNRs, we model nanoscale interconnect application. We analyze their efficacy interms of delay and other parameters. 1Cu ZBNR shows lowest interconnect delay (26.3us) as compared to other configurations. This exploration contributes to understanding the potential of BNRs in nanoelectronics interconnect.
期刊介绍:
Materials Science in Semiconductor Processing provides a unique forum for the discussion of novel processing, applications and theoretical studies of functional materials and devices for (opto)electronics, sensors, detectors, biotechnology and green energy.
Each issue will aim to provide a snapshot of current insights, new achievements, breakthroughs and future trends in such diverse fields as microelectronics, energy conversion and storage, communications, biotechnology, (photo)catalysis, nano- and thin-film technology, hybrid and composite materials, chemical processing, vapor-phase deposition, device fabrication, and modelling, which are the backbone of advanced semiconductor processing and applications.
Coverage will include: advanced lithography for submicron devices; etching and related topics; ion implantation; damage evolution and related issues; plasma and thermal CVD; rapid thermal processing; advanced metallization and interconnect schemes; thin dielectric layers, oxidation; sol-gel processing; chemical bath and (electro)chemical deposition; compound semiconductor processing; new non-oxide materials and their applications; (macro)molecular and hybrid materials; molecular dynamics, ab-initio methods, Monte Carlo, etc.; new materials and processes for discrete and integrated circuits; magnetic materials and spintronics; heterostructures and quantum devices; engineering of the electrical and optical properties of semiconductors; crystal growth mechanisms; reliability, defect density, intrinsic impurities and defects.