Eman A. Alghamdi , Ibtisam S. Almalki 1 , Refka Sai , Masfer H. Alkahtani , Ghazal S. Yafi , Yahya A. Alzahrani , Sultan M. Alenzi , Abdulaziz Aljuwayr , Abdurhman Aldukhail l , Khalid E. Alzahrani , Fatimah S. Alfaifi , Hayat S. Althobaiti , Wadha Khalaf Alenazi , Anwar Q. Alanazi , Masaud Almalki
{"title":"Enhancing efficiency through surface passivation of carbon-based perovskite solar cells","authors":"Eman A. Alghamdi , Ibtisam S. Almalki 1 , Refka Sai , Masfer H. Alkahtani , Ghazal S. Yafi , Yahya A. Alzahrani , Sultan M. Alenzi , Abdulaziz Aljuwayr , Abdurhman Aldukhail l , Khalid E. Alzahrani , Fatimah S. Alfaifi , Hayat S. Althobaiti , Wadha Khalaf Alenazi , Anwar Q. Alanazi , Masaud Almalki","doi":"10.1016/j.mtsust.2024.101022","DOIUrl":null,"url":null,"abstract":"<div><div>Perovskite solar cells (PSCs) have made significant strides in power conversion efficiency (PCE), but their commercialization remains limited by stability issues. Additionally, the high cost of electrodes like gold necessitates the exploration of more affordable alternatives such as carbon (graphene). In this study, we present an approach that combines material dimensionality control and interfacial passivation using post-device treatment with phenethylammonium iodide (PEAI), an organic halide salt, to enhance the efficiency of carbon-based PSCs. Effective defect passivation is key to further improving the PCE and open-circuit voltage (<em>V</em><sub><em>OC</em></sub>) of PSCs. Our results show that PEAI successfully passivates defects on the perovskite surface, significantly reducing non-radiative recombination. As a result, we achieved carbon-based PSCs with an impressive efficiency of 19.3%, demonstrating excellent stability under maximum power point tracking (MPPT) for over 900 h.</div></div>","PeriodicalId":18322,"journal":{"name":"Materials Today Sustainability","volume":"28 ","pages":"Article 101022"},"PeriodicalIF":7.1000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Sustainability","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589234724003580","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Perovskite solar cells (PSCs) have made significant strides in power conversion efficiency (PCE), but their commercialization remains limited by stability issues. Additionally, the high cost of electrodes like gold necessitates the exploration of more affordable alternatives such as carbon (graphene). In this study, we present an approach that combines material dimensionality control and interfacial passivation using post-device treatment with phenethylammonium iodide (PEAI), an organic halide salt, to enhance the efficiency of carbon-based PSCs. Effective defect passivation is key to further improving the PCE and open-circuit voltage (VOC) of PSCs. Our results show that PEAI successfully passivates defects on the perovskite surface, significantly reducing non-radiative recombination. As a result, we achieved carbon-based PSCs with an impressive efficiency of 19.3%, demonstrating excellent stability under maximum power point tracking (MPPT) for over 900 h.
期刊介绍:
Materials Today Sustainability is a multi-disciplinary journal covering all aspects of sustainability through materials science.
With a rapidly increasing population with growing demands, materials science has emerged as a critical discipline toward protecting of the environment and ensuring the long term survival of future generations.