{"title":"Covalent organic frameworks: A green approach to environmental challenges","authors":"Doaa Zamel , Atta Ullah Khan","doi":"10.1016/j.mtsust.2025.101096","DOIUrl":null,"url":null,"abstract":"<div><div>Covalent organic frameworks (COFs) have emerged as a versatile class of crystalline porous materials with exceptional structural tunability, high surface area, and Chemical stability. The concurrent polymerization and crystallization of monomers with specific bonding designs produce covalent organic frameworks, which are polymeric networks bound together by strong covalent bonds in 2D or 3D structures. The properties exhibited by COFs have quickly broadened to include those relevant for applications such as heterogeneous catalysis, energy storage, and water and air purification. However, most of these applications demand morphological control, material quality, and synthetic efficiency, which surpass the limitations of current synthesis methods. Achieving this level of quality requires deeper understanding of COF nucleation and synthesis processes. This review sheds the light on the advancements in COF synthesis, highlighting the development of innovative methodologies to achieve precise structure and effective functionality of COFs. Furthermore, the environmental applications of COFs have been critically examined, with a focus on their role in pollutant capture, water purification, and catalytic degradation of environmental contaminants. Moreover, it further concludes with an outlook on future directions and challenges in the field, emphasizing the need for further research to increase the scalability, stability, and reusability of COFs in practical environmental applications.</div></div>","PeriodicalId":18322,"journal":{"name":"Materials Today Sustainability","volume":"30 ","pages":"Article 101096"},"PeriodicalIF":7.1000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Sustainability","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589234725000259","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Covalent organic frameworks (COFs) have emerged as a versatile class of crystalline porous materials with exceptional structural tunability, high surface area, and Chemical stability. The concurrent polymerization and crystallization of monomers with specific bonding designs produce covalent organic frameworks, which are polymeric networks bound together by strong covalent bonds in 2D or 3D structures. The properties exhibited by COFs have quickly broadened to include those relevant for applications such as heterogeneous catalysis, energy storage, and water and air purification. However, most of these applications demand morphological control, material quality, and synthetic efficiency, which surpass the limitations of current synthesis methods. Achieving this level of quality requires deeper understanding of COF nucleation and synthesis processes. This review sheds the light on the advancements in COF synthesis, highlighting the development of innovative methodologies to achieve precise structure and effective functionality of COFs. Furthermore, the environmental applications of COFs have been critically examined, with a focus on their role in pollutant capture, water purification, and catalytic degradation of environmental contaminants. Moreover, it further concludes with an outlook on future directions and challenges in the field, emphasizing the need for further research to increase the scalability, stability, and reusability of COFs in practical environmental applications.
期刊介绍:
Materials Today Sustainability is a multi-disciplinary journal covering all aspects of sustainability through materials science.
With a rapidly increasing population with growing demands, materials science has emerged as a critical discipline toward protecting of the environment and ensuring the long term survival of future generations.