Investigating a multi-generational energy system incorporating an OTEC cycle, solar collector, and wind turbine: Six E analysis, including energy, exergy, exergoenvironmental, exergoeconomic, emergoeconomic, and emergoenvironmental
{"title":"Investigating a multi-generational energy system incorporating an OTEC cycle, solar collector, and wind turbine: Six E analysis, including energy, exergy, exergoenvironmental, exergoeconomic, emergoeconomic, and emergoenvironmental","authors":"Hadi Kamfar , Abolfazl Shojaeian , Jaber Yousefi Seyf , Najmeh Hajialigol","doi":"10.1016/j.mtsust.2025.101097","DOIUrl":null,"url":null,"abstract":"<div><div>In the context of increasing focus on renewable energy due to environmental degradation, population growth, and declining freshwater resources, this study examines a combined power generation and freshwater production system. The feasibility of integrating solar and wind energy systems is assessed using EES software, with sensitivity analysis identifying optimal input parameters for the organic cycle fluid. Results show that increasing solar collector area, solar radiation, pinch point temperature, and wind speed improves performance initially, but leads to higher exergy destruction, environmental impact, and economic costs. Therefore, identifying optimal values for each parameter is essential for overall system optimization. Exergoeconomic and exergoenvironmental analyses indicate that the lowest economic exergy coefficient is associated with closed heater equipment, while the lowest exergoenvironmental factor is linked to the Rankine condenser. The total economic cost, environmental impact, and energy-based cost and impact rates for January are reported as 373.1 ($/h), 2.184 ($/h), 3.962 × 1014 (Sej/h), and 4.022 × 1016 (Sej/h), respectively.</div></div>","PeriodicalId":18322,"journal":{"name":"Materials Today Sustainability","volume":"30 ","pages":"Article 101097"},"PeriodicalIF":7.1000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Sustainability","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589234725000260","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In the context of increasing focus on renewable energy due to environmental degradation, population growth, and declining freshwater resources, this study examines a combined power generation and freshwater production system. The feasibility of integrating solar and wind energy systems is assessed using EES software, with sensitivity analysis identifying optimal input parameters for the organic cycle fluid. Results show that increasing solar collector area, solar radiation, pinch point temperature, and wind speed improves performance initially, but leads to higher exergy destruction, environmental impact, and economic costs. Therefore, identifying optimal values for each parameter is essential for overall system optimization. Exergoeconomic and exergoenvironmental analyses indicate that the lowest economic exergy coefficient is associated with closed heater equipment, while the lowest exergoenvironmental factor is linked to the Rankine condenser. The total economic cost, environmental impact, and energy-based cost and impact rates for January are reported as 373.1 ($/h), 2.184 ($/h), 3.962 × 1014 (Sej/h), and 4.022 × 1016 (Sej/h), respectively.
期刊介绍:
Materials Today Sustainability is a multi-disciplinary journal covering all aspects of sustainability through materials science.
With a rapidly increasing population with growing demands, materials science has emerged as a critical discipline toward protecting of the environment and ensuring the long term survival of future generations.