Learning-based production, maintenance, and quality optimization in smart manufacturing systems: A literature review and trends

IF 6.7 1区 工程技术 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computers & Industrial Engineering Pub Date : 2024-10-19 DOI:10.1016/j.cie.2024.110656
Panagiotis D. Paraschos , Dimitrios E. Koulouriotis
{"title":"Learning-based production, maintenance, and quality optimization in smart manufacturing systems: A literature review and trends","authors":"Panagiotis D. Paraschos ,&nbsp;Dimitrios E. Koulouriotis","doi":"10.1016/j.cie.2024.110656","DOIUrl":null,"url":null,"abstract":"<div><div>With the introduction of manufacturing paradigms, including Industry 4.0, production research has shifted its focus to enabling intelligent manufacturing systems within industrial environments. These systems can efficiently schedule and control processes and operations using artificial intelligence methods, including machine learning and deep learning. Since 1995, relevant literature has presented several examples of such implementations, addressing topics, for example equipment fault diagnosis and quality inspections. To this end, the present paper strives to present a state-of-the-art review of the learning-based scheduling and control frameworks, which are exploited in the production research. The review is limited to the relevant research between the years 1995 and 2024, surveying approaches in the domains of manufacturing, maintenance, and quality control. To this end, the paper follows a <em>meta</em>-analysis method for the selection and evaluation of relevant research articles. Moreover, research questions are formulated to analyze the obtained findings and seek out insights on aspects of the relevant research, including the inclusion of decision-making models and dissemination of literature. The provided answers, among others, reveal trends and limitations of the state-of-the art research in relation to learning-based scheduling and control.</div></div>","PeriodicalId":55220,"journal":{"name":"Computers & Industrial Engineering","volume":null,"pages":null},"PeriodicalIF":6.7000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Industrial Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360835224007782","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

With the introduction of manufacturing paradigms, including Industry 4.0, production research has shifted its focus to enabling intelligent manufacturing systems within industrial environments. These systems can efficiently schedule and control processes and operations using artificial intelligence methods, including machine learning and deep learning. Since 1995, relevant literature has presented several examples of such implementations, addressing topics, for example equipment fault diagnosis and quality inspections. To this end, the present paper strives to present a state-of-the-art review of the learning-based scheduling and control frameworks, which are exploited in the production research. The review is limited to the relevant research between the years 1995 and 2024, surveying approaches in the domains of manufacturing, maintenance, and quality control. To this end, the paper follows a meta-analysis method for the selection and evaluation of relevant research articles. Moreover, research questions are formulated to analyze the obtained findings and seek out insights on aspects of the relevant research, including the inclusion of decision-making models and dissemination of literature. The provided answers, among others, reveal trends and limitations of the state-of-the art research in relation to learning-based scheduling and control.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
智能制造系统中基于学习的生产、维护和质量优化:文献综述与发展趋势
随着工业 4.0 等制造模式的引入,生产研究的重点已转向在工业环境中实现智能制造系统。这些系统可以利用人工智能方法(包括机器学习和深度学习)有效地安排和控制流程和操作。自 1995 年以来,相关文献已介绍了多个此类实施实例,涉及设备故障诊断和质量检测等主题。为此,本文力求对生产研究中使用的基于学习的调度和控制框架进行最新回顾。回顾仅限于 1995 年至 2024 年间的相关研究,调查了制造、维护和质量控制领域的方法。为此,本文采用荟萃分析法对相关研究文章进行筛选和评估。此外,还提出了一些研究问题,以分析所获得的研究结果,并寻求对相关研究方面的见解,包括决策模型的纳入和文献的传播。所提供的答案,除其他外,揭示了与基于学习的调度和控制有关的最新研究的趋势和局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computers & Industrial Engineering
Computers & Industrial Engineering 工程技术-工程:工业
CiteScore
12.70
自引率
12.70%
发文量
794
审稿时长
10.6 months
期刊介绍: Computers & Industrial Engineering (CAIE) is dedicated to researchers, educators, and practitioners in industrial engineering and related fields. Pioneering the integration of computers in research, education, and practice, industrial engineering has evolved to make computers and electronic communication integral to its domain. CAIE publishes original contributions focusing on the development of novel computerized methodologies to address industrial engineering problems. It also highlights the applications of these methodologies to issues within the broader industrial engineering and associated communities. The journal actively encourages submissions that push the boundaries of fundamental theories and concepts in industrial engineering techniques.
期刊最新文献
Joint optimization of opportunistic maintenance and speed control for continuous process manufacturing systems considering stochastic imperfect maintenance Production line location strategy for foreign manufacturer when selling in a market lag behind in manufacturing Bi-objective optimization for equipment system-of-systems development planning using a novel co-evolutionary algorithm based on NSGA-II and HypE Artificial intelligence abnormal driving behavior detection for mitigating traffic accidents Design and strategy selection for quality incentive mechanisms in the public cloud manufacturing model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1