Artificial intelligence abnormal driving behavior detection for mitigating traffic accidents

IF 6.7 1区 工程技术 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computers & Industrial Engineering Pub Date : 2024-10-28 DOI:10.1016/j.cie.2024.110667
{"title":"Artificial intelligence abnormal driving behavior detection for mitigating traffic accidents","authors":"","doi":"10.1016/j.cie.2024.110667","DOIUrl":null,"url":null,"abstract":"<div><div>Annually, a tragic toll of 1.3 million lives is lost on roads across the globe, with tens of millions more suffering injuries or disabilities. The necessity for precise detection of abnormal driving behavior is paramount in reducing traffic accidents. This paper aims to bridge the gap between normal and abnormal driving patterns, offering near-flawless detection capabilities. This paper presents a novel AI tachograph prototype, the first of its kind, that can classify driving behavior into normal and abnormal in real time with an impressive accuracy of 99.99 %. This high level of accuracy is achieved by using a bias-reduction method. The bias-reduction method focuses on minimizing biases in the dataset, such as surrounding situations, location, driver information, and car types. This approach significantly enhances the prediction accuracy of existing machine learning algorithms. The dataset used for this research is quite extensive, consisting of anomaly data collected from 10,181 commercial vehicles and 12,530 drivers in just 0.1 s. This rich dataset is crucial for building a reliable model. The effectiveness of the proposed method was validated using 10-fold cross validation on 480 k to 540 k instances with 36 determinants. The results clearly demonstrated that reducing bias leads to higher prediction accuracy. The paper also plans to compare the prediction accuracy of balanced and imbalanced datasets. The findings from this research have broader implications as the proposed method can be applied generally to machine learning to improve prediction accuracy.</div></div>","PeriodicalId":55220,"journal":{"name":"Computers & Industrial Engineering","volume":null,"pages":null},"PeriodicalIF":6.7000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Industrial Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360835224007897","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Annually, a tragic toll of 1.3 million lives is lost on roads across the globe, with tens of millions more suffering injuries or disabilities. The necessity for precise detection of abnormal driving behavior is paramount in reducing traffic accidents. This paper aims to bridge the gap between normal and abnormal driving patterns, offering near-flawless detection capabilities. This paper presents a novel AI tachograph prototype, the first of its kind, that can classify driving behavior into normal and abnormal in real time with an impressive accuracy of 99.99 %. This high level of accuracy is achieved by using a bias-reduction method. The bias-reduction method focuses on minimizing biases in the dataset, such as surrounding situations, location, driver information, and car types. This approach significantly enhances the prediction accuracy of existing machine learning algorithms. The dataset used for this research is quite extensive, consisting of anomaly data collected from 10,181 commercial vehicles and 12,530 drivers in just 0.1 s. This rich dataset is crucial for building a reliable model. The effectiveness of the proposed method was validated using 10-fold cross validation on 480 k to 540 k instances with 36 determinants. The results clearly demonstrated that reducing bias leads to higher prediction accuracy. The paper also plans to compare the prediction accuracy of balanced and imbalanced datasets. The findings from this research have broader implications as the proposed method can be applied generally to machine learning to improve prediction accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人工智能异常驾驶行为检测,缓解交通事故
每年,全球有 130 万人在道路上丧生,另有数千万人受伤或致残。要减少交通事故,就必须精确检测异常驾驶行为。本文旨在弥合正常驾驶模式与异常驾驶模式之间的差距,提供近乎完美的检测能力。本文介绍了一种新颖的人工智能行车记录仪原型,它是同类产品中的首款,可实时将驾驶行为分为正常和异常,准确率高达 99.99%。这种高准确度是通过使用减少偏差的方法实现的。减少偏差法的重点是尽量减少数据集中的偏差,如周围环境、位置、驾驶员信息和汽车类型等。这种方法大大提高了现有机器学习算法的预测准确性。这项研究使用的数据集相当广泛,包括在短短 0.1 秒内从 10,181 辆商用车和 12,530 名驾驶员那里收集到的异常数据。通过对 480 k 至 540 k 个包含 36 个决定因素的实例进行 10 倍交叉验证,验证了所提方法的有效性。结果清楚地表明,减少偏差可提高预测准确率。论文还计划比较平衡数据集和不平衡数据集的预测准确性。这项研究的发现具有更广泛的意义,因为所提出的方法可普遍应用于机器学习,以提高预测准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computers & Industrial Engineering
Computers & Industrial Engineering 工程技术-工程:工业
CiteScore
12.70
自引率
12.70%
发文量
794
审稿时长
10.6 months
期刊介绍: Computers & Industrial Engineering (CAIE) is dedicated to researchers, educators, and practitioners in industrial engineering and related fields. Pioneering the integration of computers in research, education, and practice, industrial engineering has evolved to make computers and electronic communication integral to its domain. CAIE publishes original contributions focusing on the development of novel computerized methodologies to address industrial engineering problems. It also highlights the applications of these methodologies to issues within the broader industrial engineering and associated communities. The journal actively encourages submissions that push the boundaries of fundamental theories and concepts in industrial engineering techniques.
期刊最新文献
Joint optimization of opportunistic maintenance and speed control for continuous process manufacturing systems considering stochastic imperfect maintenance Production line location strategy for foreign manufacturer when selling in a market lag behind in manufacturing Bi-objective optimization for equipment system-of-systems development planning using a novel co-evolutionary algorithm based on NSGA-II and HypE Artificial intelligence abnormal driving behavior detection for mitigating traffic accidents Design and strategy selection for quality incentive mechanisms in the public cloud manufacturing model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1