Sanghun Byeon, Mohammad M. Afandi, Busic Kang, Jongsu Kim
{"title":"Narrowband-UVB-emitting gadolinium-doped yttrium oxide nanofilm on xenon excimer lamp for phototherapy","authors":"Sanghun Byeon, Mohammad M. Afandi, Busic Kang, Jongsu Kim","doi":"10.1016/j.jlumin.2024.120944","DOIUrl":null,"url":null,"abstract":"<div><div>The continuous utilization of ultraviolet (UV) light sources within both academic and industrial contexts necessitates the imperative advancement of alternative UV sources to replace hazardous mercury lamps. Herein, we proposed a mercury-free narrowband UVB (NB-UVB)-emitting device from Y<sub>2</sub>O<sub>3</sub>:Gd<sup>3+</sup> nanofilm on a tubular quartz substrate. The nanofilm is fabricated utilizing the spin-coating sol-gel precursor technique and is subsequently synthesized via a high-annealing temperature solid-state reaction. This synthesis resulted in the formation of a single-phase cubical structure of Y<sub>2</sub>O<sub>3</sub> characterized by a crack-free morphology. The NB-UVB radiative output with a peak at 315 nm is generated through vacuum UV-induced photoluminescence originating from the emission of Xe excimer, which subsequently excites the Gd<sup>3+</sup> luminescent centers incorporated within the Y<sub>2</sub>O<sub>3</sub> host matrix. Moreover, in a high-voltage bipolar power system operating at 19 kV and 19 kHz, the device exhibited an NB-UVB radiance output of 1.34 mW, accompanied by a power efficiency of 0.02 %, whilst preserving exceptional temporal performance. Thus, this investigation introduces an innovative perspective on a mercury-free NB-UVB-emitting device, thereby promoting further exploration into the application of UV radiation sources derived from excimer lamp technology.</div></div>","PeriodicalId":16159,"journal":{"name":"Journal of Luminescence","volume":"277 ","pages":"Article 120944"},"PeriodicalIF":3.3000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Luminescence","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022231324005088","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
The continuous utilization of ultraviolet (UV) light sources within both academic and industrial contexts necessitates the imperative advancement of alternative UV sources to replace hazardous mercury lamps. Herein, we proposed a mercury-free narrowband UVB (NB-UVB)-emitting device from Y2O3:Gd3+ nanofilm on a tubular quartz substrate. The nanofilm is fabricated utilizing the spin-coating sol-gel precursor technique and is subsequently synthesized via a high-annealing temperature solid-state reaction. This synthesis resulted in the formation of a single-phase cubical structure of Y2O3 characterized by a crack-free morphology. The NB-UVB radiative output with a peak at 315 nm is generated through vacuum UV-induced photoluminescence originating from the emission of Xe excimer, which subsequently excites the Gd3+ luminescent centers incorporated within the Y2O3 host matrix. Moreover, in a high-voltage bipolar power system operating at 19 kV and 19 kHz, the device exhibited an NB-UVB radiance output of 1.34 mW, accompanied by a power efficiency of 0.02 %, whilst preserving exceptional temporal performance. Thus, this investigation introduces an innovative perspective on a mercury-free NB-UVB-emitting device, thereby promoting further exploration into the application of UV radiation sources derived from excimer lamp technology.
期刊介绍:
The purpose of the Journal of Luminescence is to provide a means of communication between scientists in different disciplines who share a common interest in the electronic excited states of molecular, ionic and covalent systems, whether crystalline, amorphous, or liquid.
We invite original papers and reviews on such subjects as: exciton and polariton dynamics, dynamics of localized excited states, energy and charge transport in ordered and disordered systems, radiative and non-radiative recombination, relaxation processes, vibronic interactions in electronic excited states, photochemistry in condensed systems, excited state resonance, double resonance, spin dynamics, selective excitation spectroscopy, hole burning, coherent processes in excited states, (e.g. coherent optical transients, photon echoes, transient gratings), multiphoton processes, optical bistability, photochromism, and new techniques for the study of excited states. This list is not intended to be exhaustive. Papers in the traditional areas of optical spectroscopy (absorption, MCD, luminescence, Raman scattering) are welcome. Papers on applications (phosphors, scintillators, electro- and cathodo-luminescence, radiography, bioimaging, solar energy, energy conversion, etc.) are also welcome if they present results of scientific, rather than only technological interest. However, papers containing purely theoretical results, not related to phenomena in the excited states, as well as papers using luminescence spectroscopy to perform routine analytical chemistry or biochemistry procedures, are outside the scope of the journal. Some exceptions will be possible at the discretion of the editors.