Superorders and terahertz acoustic modes in multiferroic BiFeO3/LaFeO3 superlattices

IF 11.9 1区 物理与天体物理 Q1 PHYSICS, APPLIED Applied physics reviews Pub Date : 2024-10-29 DOI:10.1063/5.0203076
R. Gu, R. Xu, F. Delodovici, B. Carcan, M. Khiari, G. Vaudel, V. Juvé, M. C. Weber, A. Poirier, P. Nandi, B. Xu, V. E. Gusev, L. Bellaiche, C. Laulhé, N. Jaouen, P. Manuel, B. Dkhil, C. Paillard, L. Yedra, H. Bouyanfif, P. Ruello
{"title":"Superorders and terahertz acoustic modes in multiferroic BiFeO3/LaFeO3 superlattices","authors":"R. Gu, R. Xu, F. Delodovici, B. Carcan, M. Khiari, G. Vaudel, V. Juvé, M. C. Weber, A. Poirier, P. Nandi, B. Xu, V. E. Gusev, L. Bellaiche, C. Laulhé, N. Jaouen, P. Manuel, B. Dkhil, C. Paillard, L. Yedra, H. Bouyanfif, P. Ruello","doi":"10.1063/5.0203076","DOIUrl":null,"url":null,"abstract":"Superlattices are materials created by the alternating growth of two chemically different materials. The direct consequence of creating a superlattice is the folding of the Brillouin zone, which gives rise to additional electronic bands and phonon modes. This phenomenon has been successfully exploited to achieve new transport and optical properties in semiconductor superlattices. Here, we show that multiferroic BiFeO3/LaFeO3 superlattices exhibit several structural orders parallel and perpendicular to the growth direction, not existing in individual bulk materials. Using transmission electron microscopy, x-ray diffraction, and first-principles calculations, we reveal in particular a new long-range order of tilted FeO6 octahedra, with a period along the growth direction about twice that of the chemical supercell, i.e., a superorder. The effect of this new structural order on the phonon dynamics is studied with ultrafast optical pump-probe experiments. While a folded-mode at 1.2 THz is attributed solely to the chemical modulation of the superlattice, the existence of another 0.7 THz mode seems to be explained only by a double Brillouin zone folding in agreement with the structural out-of-plane superorder. Our work shows that multiferroic BiFeO3/LaFeO3 superlattices can be used to tune the spectrum of coherent THz phonons, and potentially that of magnons or electromagnons.","PeriodicalId":8200,"journal":{"name":"Applied physics reviews","volume":"43 1","pages":""},"PeriodicalIF":11.9000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied physics reviews","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0203076","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Superlattices are materials created by the alternating growth of two chemically different materials. The direct consequence of creating a superlattice is the folding of the Brillouin zone, which gives rise to additional electronic bands and phonon modes. This phenomenon has been successfully exploited to achieve new transport and optical properties in semiconductor superlattices. Here, we show that multiferroic BiFeO3/LaFeO3 superlattices exhibit several structural orders parallel and perpendicular to the growth direction, not existing in individual bulk materials. Using transmission electron microscopy, x-ray diffraction, and first-principles calculations, we reveal in particular a new long-range order of tilted FeO6 octahedra, with a period along the growth direction about twice that of the chemical supercell, i.e., a superorder. The effect of this new structural order on the phonon dynamics is studied with ultrafast optical pump-probe experiments. While a folded-mode at 1.2 THz is attributed solely to the chemical modulation of the superlattice, the existence of another 0.7 THz mode seems to be explained only by a double Brillouin zone folding in agreement with the structural out-of-plane superorder. Our work shows that multiferroic BiFeO3/LaFeO3 superlattices can be used to tune the spectrum of coherent THz phonons, and potentially that of magnons or electromagnons.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多铁性 BiFeO3/LaFeO3 超晶格中的超阶和太赫兹声学模式
超晶格是由两种化学性质不同的材料交替生长而成的材料。形成超晶格的直接后果是布里渊区的折叠,从而产生额外的电子带和声子模式。这种现象已被成功地用于在半导体超晶格中实现新的传输和光学特性。在这里,我们展示了多铁性 BiFeO3/LaFeO3 超晶格呈现出平行于和垂直于生长方向的几种结构阶,这在单个块体材料中是不存在的。利用透射电子显微镜、X 射线衍射和第一原理计算,我们特别揭示了一种新的倾斜 FeO6 八面体长程阶,其沿生长方向的周期约为化学超晶胞的两倍,即超阶。我们通过超快光学泵浦探针实验研究了这种新结构阶对声子动力学的影响。1.2 太赫兹的折叠模式完全归因于超晶格的化学调制,而另一个 0.7 太赫兹模式的存在似乎只能通过与结构面外超阶一致的双布里渊区折叠来解释。我们的研究表明,多铁性 BiFeO3/LaFeO3 超晶格可用于调整相干太赫兹声子的频谱,并有可能调整磁子或电磁子的频谱。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied physics reviews
Applied physics reviews PHYSICS, APPLIED-
CiteScore
22.50
自引率
2.00%
发文量
113
审稿时长
2 months
期刊介绍: Applied Physics Reviews (APR) is a journal featuring articles on critical topics in experimental or theoretical research in applied physics and applications of physics to other scientific and engineering branches. The publication includes two main types of articles: Original Research: These articles report on high-quality, novel research studies that are of significant interest to the applied physics community. Reviews: Review articles in APR can either be authoritative and comprehensive assessments of established areas of applied physics or short, timely reviews of recent advances in established fields or emerging areas of applied physics.
期刊最新文献
Progress, challenges, and perspectives of magnetoelectric composites and devices based on relaxor-PT single crystals Nanoscale insights on phase transition dynamics of doped VO2 for memristor devices Coherent magnon transport in a van der Waals antiferromagnet Lanthanide doped semiconductor thin films for photonic and optoelectronic applications Single-photon generation and manipulation in quantum nanophotonics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1