{"title":"Single-photon generation and manipulation in quantum nanophotonics","authors":"Guangxin Liu, Wenjie Zhou, Dmitrii Gromyko, Ding Huang, Zhaogang Dong, Renming Liu, Juanfeng Zhu, Jingfeng Liu, Cheng-Wei Qiu, Lin Wu","doi":"10.1063/5.0227350","DOIUrl":null,"url":null,"abstract":"Developing reliable and efficient single-photon sources is crucial for advancing quantum technologies, relying on nonlinear frequency conversion or spontaneous emission from individual quantum emitters. While different types of single-photon sources excel in specific applications, none meet all criteria for an “ideal” source: exceptional brightness, high purity, and indistinguishability. To address this challenge, coupling single-photon emitters with designer nanostructures can significantly enhance emission performance, a pivotal area in quantum nanophotonics. This review summarizes recent advancements over the past decade in generating and manipulating single photons, emphasizing the pivotal role of nanostructure coupling. Single-photon emission systems—such as nonlinear crystals, solid-state defects, quantum dots, carbon nanotubes, and two-dimensional materials—are categorized quantitatively based on their ability to achieve high purity, indistinguishability, and brightness, presented in a three-dimensional technology map. Furthermore, nanostructure engineering is showcased for manipulating properties such as emission direction, polarization, chirality, and entanglement of single photons. By elucidating these critical aspects, this review aims to advance understanding of how advancements in nanostructured environments promise to shape the future of single-photon generation and manipulation within quantum nanophotonics.","PeriodicalId":8200,"journal":{"name":"Applied physics reviews","volume":"25 1","pages":""},"PeriodicalIF":11.9000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied physics reviews","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0227350","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Developing reliable and efficient single-photon sources is crucial for advancing quantum technologies, relying on nonlinear frequency conversion or spontaneous emission from individual quantum emitters. While different types of single-photon sources excel in specific applications, none meet all criteria for an “ideal” source: exceptional brightness, high purity, and indistinguishability. To address this challenge, coupling single-photon emitters with designer nanostructures can significantly enhance emission performance, a pivotal area in quantum nanophotonics. This review summarizes recent advancements over the past decade in generating and manipulating single photons, emphasizing the pivotal role of nanostructure coupling. Single-photon emission systems—such as nonlinear crystals, solid-state defects, quantum dots, carbon nanotubes, and two-dimensional materials—are categorized quantitatively based on their ability to achieve high purity, indistinguishability, and brightness, presented in a three-dimensional technology map. Furthermore, nanostructure engineering is showcased for manipulating properties such as emission direction, polarization, chirality, and entanglement of single photons. By elucidating these critical aspects, this review aims to advance understanding of how advancements in nanostructured environments promise to shape the future of single-photon generation and manipulation within quantum nanophotonics.
期刊介绍:
Applied Physics Reviews (APR) is a journal featuring articles on critical topics in experimental or theoretical research in applied physics and applications of physics to other scientific and engineering branches. The publication includes two main types of articles:
Original Research: These articles report on high-quality, novel research studies that are of significant interest to the applied physics community.
Reviews: Review articles in APR can either be authoritative and comprehensive assessments of established areas of applied physics or short, timely reviews of recent advances in established fields or emerging areas of applied physics.