Results from the autoPET challenge on fully automated lesion segmentation in oncologic PET/CT imaging

IF 18.8 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Nature Machine Intelligence Pub Date : 2024-10-30 DOI:10.1038/s42256-024-00912-9
Sergios Gatidis, Marcel Früh, Matthias P. Fabritius, Sijing Gu, Konstantin Nikolaou, Christian La Fougère, Jin Ye, Junjun He, Yige Peng, Lei Bi, Jun Ma, Bo Wang, Jia Zhang, Yukun Huang, Lars Heiliger, Zdravko Marinov, Rainer Stiefelhagen, Jan Egger, Jens Kleesiek, Ludovic Sibille, Lei Xiang, Simone Bendazzoli, Mehdi Astaraki, Michael Ingrisch, Clemens C. Cyran, Thomas Küstner
{"title":"Results from the autoPET challenge on fully automated lesion segmentation in oncologic PET/CT imaging","authors":"Sergios Gatidis, Marcel Früh, Matthias P. Fabritius, Sijing Gu, Konstantin Nikolaou, Christian La Fougère, Jin Ye, Junjun He, Yige Peng, Lei Bi, Jun Ma, Bo Wang, Jia Zhang, Yukun Huang, Lars Heiliger, Zdravko Marinov, Rainer Stiefelhagen, Jan Egger, Jens Kleesiek, Ludovic Sibille, Lei Xiang, Simone Bendazzoli, Mehdi Astaraki, Michael Ingrisch, Clemens C. Cyran, Thomas Küstner","doi":"10.1038/s42256-024-00912-9","DOIUrl":null,"url":null,"abstract":"<p>Automated detection of tumour lesions on positron emission tomography–computed tomography (PET/CT) image data is a clinically relevant but highly challenging task. Progress in this field has been hampered in the past owing to the lack of publicly available annotated data and limited availability of platforms for inter-institutional collaboration. Here we describe the results of the autoPET challenge, a biomedical image analysis challenge aimed to motivate research in the field of automated PET/CT image analysis. The challenge task was the automated segmentation of metabolically active tumour lesions on whole-body <sup>18</sup>F-fluorodeoxyglucose PET/CT. Challenge participants had access to a large publicly available annotated PET/CT dataset for algorithm training. All algorithms submitted to the final challenge phase were based on deep learning methods, mostly using three-dimensional U-Net architectures. Submitted algorithms were evaluated on a private test set composed of 150 PET/CT studies from two institutions. An ensemble model of the highest-ranking algorithms achieved favourable performance compared with individual algorithms. Algorithm performance was dependent on the quality and quantity of data and on algorithm design choices, such as tailored post-processing of predicted segmentations. Future iterations of this challenge will focus on generalization and clinical translation.</p>","PeriodicalId":48533,"journal":{"name":"Nature Machine Intelligence","volume":"68 1","pages":""},"PeriodicalIF":18.8000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Machine Intelligence","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1038/s42256-024-00912-9","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Automated detection of tumour lesions on positron emission tomography–computed tomography (PET/CT) image data is a clinically relevant but highly challenging task. Progress in this field has been hampered in the past owing to the lack of publicly available annotated data and limited availability of platforms for inter-institutional collaboration. Here we describe the results of the autoPET challenge, a biomedical image analysis challenge aimed to motivate research in the field of automated PET/CT image analysis. The challenge task was the automated segmentation of metabolically active tumour lesions on whole-body 18F-fluorodeoxyglucose PET/CT. Challenge participants had access to a large publicly available annotated PET/CT dataset for algorithm training. All algorithms submitted to the final challenge phase were based on deep learning methods, mostly using three-dimensional U-Net architectures. Submitted algorithms were evaluated on a private test set composed of 150 PET/CT studies from two institutions. An ensemble model of the highest-ranking algorithms achieved favourable performance compared with individual algorithms. Algorithm performance was dependent on the quality and quantity of data and on algorithm design choices, such as tailored post-processing of predicted segmentations. Future iterations of this challenge will focus on generalization and clinical translation.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
肿瘤 PET/CT 成像中全自动病灶分割的 autoPET 挑战赛结果
在正电子发射计算机断层扫描(PET/CT)图像数据上自动检测肿瘤病灶是一项与临床相关但极具挑战性的任务。过去,由于缺乏公开可用的注释数据以及机构间合作平台有限,这一领域的研究进展一直受阻。我们在此介绍 autoPET 挑战赛的结果,这是一项生物医学图像分析挑战赛,旨在激励 PET/CT 图像自动分析领域的研究。挑战任务是自动分割全身 18F 氟脱氧葡萄糖 PET/CT 上代谢活跃的肿瘤病灶。挑战赛的参赛者可以访问大量公开的注释 PET/CT 数据集,进行算法训练。提交到最后挑战阶段的所有算法都基于深度学习方法,大多使用三维 U-Net 架构。提交的算法在一个私人测试集上进行了评估,该测试集由来自两个机构的 150 项 PET/CT 研究组成。与单个算法相比,排名最高算法的集合模型取得了良好的性能。算法的性能取决于数据的质量和数量以及算法设计的选择,例如对预测分割进行量身定制的后处理。这项挑战赛的未来迭代将侧重于推广和临床转化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
36.90
自引率
2.10%
发文量
127
期刊介绍: Nature Machine Intelligence is a distinguished publication that presents original research and reviews on various topics in machine learning, robotics, and AI. Our focus extends beyond these fields, exploring their profound impact on other scientific disciplines, as well as societal and industrial aspects. We recognize limitless possibilities wherein machine intelligence can augment human capabilities and knowledge in domains like scientific exploration, healthcare, medical diagnostics, and the creation of safe and sustainable cities, transportation, and agriculture. Simultaneously, we acknowledge the emergence of ethical, social, and legal concerns due to the rapid pace of advancements. To foster interdisciplinary discussions on these far-reaching implications, Nature Machine Intelligence serves as a platform for dialogue facilitated through Comments, News Features, News & Views articles, and Correspondence. Our goal is to encourage a comprehensive examination of these subjects. Similar to all Nature-branded journals, Nature Machine Intelligence operates under the guidance of a team of skilled editors. We adhere to a fair and rigorous peer-review process, ensuring high standards of copy-editing and production, swift publication, and editorial independence.
期刊最新文献
Machine learning for practical quantum error mitigation AI pioneers win 2024 Nobel prizes Reshaping the discovery of self-assembling peptides with generative AI guided by hybrid deep learning A soft skin with self-decoupled three-axis force-sensing taxels Efficient rare event sampling with unsupervised normalizing flows
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1