Recommendation feedback-based dynamic adaptive training for efficient social item recommendation

IF 7.5 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Expert Systems with Applications Pub Date : 2024-10-28 DOI:10.1016/j.eswa.2024.125605
Yi Wang , Chenqi Guo , Yinglong Ma , Qianli Feng
{"title":"Recommendation feedback-based dynamic adaptive training for efficient social item recommendation","authors":"Yi Wang ,&nbsp;Chenqi Guo ,&nbsp;Yinglong Ma ,&nbsp;Qianli Feng","doi":"10.1016/j.eswa.2024.125605","DOIUrl":null,"url":null,"abstract":"<div><div>For the application of social item recommendation, how to effectively dig out the implicit relationships between different items plays a crucial role in its performance. However, existing social item recommendation systems constructed their item graphs using a static method based on item features. Considering the fact that most items, such as live streams, can hardly be characterized with limited number of feature tags in reality, the static construction methods make it hard to accurately grasp the underlying item–item relationships. To address the problem, we propose an item graph generation method based on Recommendation Feedback and Dynamic Adaptive Training (RFDAT) to achieve an efficient social item recommendation. Specifically, a multi-task learning technique is leveraged to concurrently predict the item graph and user–item interaction graph, allowing the recommendation task itself to directly participate in the dynamic construction process of the item graph, which is adaptively constructed based on feedback from recommendation results iteratively during the training procedure. Compared with the static construction methods, this allows us to fully explore item–item relationships and item feature representations, therefore improving recommendation accuracy. Furthermore, a lightweight graph convolutional denoising and fusion method based on Laplacian smoothing filter is employed to achieve deep interaction and fusion among multi-graph features, and effectively mitigate the influence of noise in the process of feature learning. Finally, extensive experimental results on four public datasets show that compared with eight state-of-the-art methods, our proposed method achieves improvements of 4.97%, 2.90%, 2.03%, and 4.82% in the important evaluation metric NDCG@10 on Yelp, Ciao, LastFM, and Douban datasets, respectively. It also illustrates very competitive performance against these baselines in the recommendation accuracy for cold users and the recommendation rate for cold items.</div></div>","PeriodicalId":50461,"journal":{"name":"Expert Systems with Applications","volume":"262 ","pages":"Article 125605"},"PeriodicalIF":7.5000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Systems with Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0957417424024722","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

For the application of social item recommendation, how to effectively dig out the implicit relationships between different items plays a crucial role in its performance. However, existing social item recommendation systems constructed their item graphs using a static method based on item features. Considering the fact that most items, such as live streams, can hardly be characterized with limited number of feature tags in reality, the static construction methods make it hard to accurately grasp the underlying item–item relationships. To address the problem, we propose an item graph generation method based on Recommendation Feedback and Dynamic Adaptive Training (RFDAT) to achieve an efficient social item recommendation. Specifically, a multi-task learning technique is leveraged to concurrently predict the item graph and user–item interaction graph, allowing the recommendation task itself to directly participate in the dynamic construction process of the item graph, which is adaptively constructed based on feedback from recommendation results iteratively during the training procedure. Compared with the static construction methods, this allows us to fully explore item–item relationships and item feature representations, therefore improving recommendation accuracy. Furthermore, a lightweight graph convolutional denoising and fusion method based on Laplacian smoothing filter is employed to achieve deep interaction and fusion among multi-graph features, and effectively mitigate the influence of noise in the process of feature learning. Finally, extensive experimental results on four public datasets show that compared with eight state-of-the-art methods, our proposed method achieves improvements of 4.97%, 2.90%, 2.03%, and 4.82% in the important evaluation metric NDCG@10 on Yelp, Ciao, LastFM, and Douban datasets, respectively. It also illustrates very competitive performance against these baselines in the recommendation accuracy for cold users and the recommendation rate for cold items.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于推荐反馈的动态自适应训练,实现高效的社交项目推荐
对于社交物品推荐的应用而言,如何有效挖掘不同物品之间的隐含关系对其性能起着至关重要的作用。然而,现有的社交项目推荐系统都是基于项目特征的静态方法来构建项目图。考虑到大多数项目(如直播流)在现实中很难用有限的特征标签来表征,静态构建方法很难准确把握项目与项目之间的隐含关系。针对这一问题,我们提出了一种基于推荐反馈和动态自适应训练(RFDAT)的项目图生成方法,以实现高效的社交项目推荐。具体来说,该方法利用多任务学习技术同时预测物品图和用户-物品交互图,让推荐任务本身直接参与物品图的动态构建过程,并在训练过程中根据推荐结果的反馈迭代自适应地构建物品图。与静态构建方法相比,这使我们能够充分探索项目与项目之间的关系和项目特征表征,从而提高推荐的准确性。此外,我们还采用了基于拉普拉斯平滑滤波器的轻量级图卷积去噪与融合方法,实现了多图特征之间的深度交互与融合,并有效降低了特征学习过程中的噪声影响。最后,在四个公共数据集上的大量实验结果表明,与八种最先进的方法相比,我们提出的方法在 Yelp、Ciao、LastFM 和豆瓣数据集上的重要评价指标 NDCG@10 分别提高了 4.97%、2.90%、2.03% 和 4.82%。此外,在冷用户推荐准确率和冷项目推荐率方面,与这些基线相比也具有很强的竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Expert Systems with Applications
Expert Systems with Applications 工程技术-工程:电子与电气
CiteScore
13.80
自引率
10.60%
发文量
2045
审稿时长
8.7 months
期刊介绍: Expert Systems With Applications is an international journal dedicated to the exchange of information on expert and intelligent systems used globally in industry, government, and universities. The journal emphasizes original papers covering the design, development, testing, implementation, and management of these systems, offering practical guidelines. It spans various sectors such as finance, engineering, marketing, law, project management, information management, medicine, and more. The journal also welcomes papers on multi-agent systems, knowledge management, neural networks, knowledge discovery, data mining, and other related areas, excluding applications to military/defense systems.
期刊最新文献
Anticipating impression using textual sentiment based on ensemble LRD model Trusted commonsense knowledge enhanced depression detection based on three-way decision MSU-Net: Multi-Scale self-attention semantic segmentation method for oil-tea camellia planting area extraction in hilly areas of southern China Editorial Board DAN: Neural network based on dual attention for anomaly detection in ICS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1