Abdul Karim , Maria Mansab , Mobeen Shahroz , Muhammad Faheem Mushtaq , In cheol Jeong
{"title":"Anticipating impression using textual sentiment based on ensemble LRD model","authors":"Abdul Karim , Maria Mansab , Mobeen Shahroz , Muhammad Faheem Mushtaq , In cheol Jeong","doi":"10.1016/j.eswa.2024.125717","DOIUrl":null,"url":null,"abstract":"<div><div>Twitter sentiment analysis is a natural language processing that analyzes the sentiments espoused in Twitter tweets, helping users understand others’ perspectives on specific issues or trends. The research aims to improve sentiment analysis applications across industries by optimizing machine learning models for accurate sentiment prediction in diverse textual data. The goal of this study is to make the development of strong ensemble learning models by utilizing a publicly available dataset, such as Twitter sentiment analysis through Kaggle. To carefully clean the data and remove any unnecessary information, preprocessing techniques are used. The data is divided into two sections to predict impressions: training data and testing data, and seven different machine learning methods are applied such as Naive Bayes Classifiers, Logistic Regression, Decision Trees, Support Vector Machines, Multilayer Perceptron, Gradient Boosting, three classifiers that were merged into one ensemble machine learning approach. To determine each words weight value within the text of a document, the TF-IDF technique is applied. The trained model is compared to testing data to determine how much variance exists between actual and expected values. The result is evaluated using evaluation parameters such as precision, recall, and F1 score. The maximum accuracy achieved by the ensemble LRD model is approximately 90.5 %. This study aims to enhance sentiment analysis in various industries and sentiment-based recommendation systems, by analyzing diverse texts and determining people’s perspectives.</div></div>","PeriodicalId":50461,"journal":{"name":"Expert Systems with Applications","volume":"263 ","pages":"Article 125717"},"PeriodicalIF":7.5000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Systems with Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0957417424025843","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Twitter sentiment analysis is a natural language processing that analyzes the sentiments espoused in Twitter tweets, helping users understand others’ perspectives on specific issues or trends. The research aims to improve sentiment analysis applications across industries by optimizing machine learning models for accurate sentiment prediction in diverse textual data. The goal of this study is to make the development of strong ensemble learning models by utilizing a publicly available dataset, such as Twitter sentiment analysis through Kaggle. To carefully clean the data and remove any unnecessary information, preprocessing techniques are used. The data is divided into two sections to predict impressions: training data and testing data, and seven different machine learning methods are applied such as Naive Bayes Classifiers, Logistic Regression, Decision Trees, Support Vector Machines, Multilayer Perceptron, Gradient Boosting, three classifiers that were merged into one ensemble machine learning approach. To determine each words weight value within the text of a document, the TF-IDF technique is applied. The trained model is compared to testing data to determine how much variance exists between actual and expected values. The result is evaluated using evaluation parameters such as precision, recall, and F1 score. The maximum accuracy achieved by the ensemble LRD model is approximately 90.5 %. This study aims to enhance sentiment analysis in various industries and sentiment-based recommendation systems, by analyzing diverse texts and determining people’s perspectives.
期刊介绍:
Expert Systems With Applications is an international journal dedicated to the exchange of information on expert and intelligent systems used globally in industry, government, and universities. The journal emphasizes original papers covering the design, development, testing, implementation, and management of these systems, offering practical guidelines. It spans various sectors such as finance, engineering, marketing, law, project management, information management, medicine, and more. The journal also welcomes papers on multi-agent systems, knowledge management, neural networks, knowledge discovery, data mining, and other related areas, excluding applications to military/defense systems.