Shikang Wu , Muguang Liu , Kang Liu , Yuanpeng Pan , Chunsheng Zhang , Zhuangning Xie
{"title":"Study on the response of a super high-rise guyed mast under synoptic winds based on aeroelastic wind tunnel test","authors":"Shikang Wu , Muguang Liu , Kang Liu , Yuanpeng Pan , Chunsheng Zhang , Zhuangning Xie","doi":"10.1016/j.engstruct.2024.119201","DOIUrl":null,"url":null,"abstract":"<div><div>The present study examines the aeroelastic properties and wind-induced displacement response of a super high-rise guyed mast, through a series of aeroelastic model wind tunnel tests. The simulated guyed mast with a prototype height of 356 m is a representative guyed mast in Asia and has not been reported in previous literature. The impact of wind speed on both the alongwind and crosswind displacement response and the Gaussianity along the heights of the aeroelastic model is then investigated using wind tunnel measurements. Furthermore, the characteristics of mode participation and the effect of wind velocity on this phenomenon, as well as the contributions of background and resonant dynamic response, are examined in both the alongwind and crosswind directions. The results indicate that the guyed mast displacement distributions along the heights are different from those observed in the conventional self-standing lattice towers. The characteristics of multi-mode participation are notable. As wind speeds increase, the alongwind resonant response peaks shift to lower frequencies and become less distinct. In contrast, the crosswind response peaks show no significant variation. The contributions of background and resonant response along the heights, respectively, exhibit a decreasing and an increasing tendency, and wind speed exerts an influence on these phenomena.</div></div>","PeriodicalId":11763,"journal":{"name":"Engineering Structures","volume":"322 ","pages":"Article 119201"},"PeriodicalIF":5.6000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141029624017632","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
The present study examines the aeroelastic properties and wind-induced displacement response of a super high-rise guyed mast, through a series of aeroelastic model wind tunnel tests. The simulated guyed mast with a prototype height of 356 m is a representative guyed mast in Asia and has not been reported in previous literature. The impact of wind speed on both the alongwind and crosswind displacement response and the Gaussianity along the heights of the aeroelastic model is then investigated using wind tunnel measurements. Furthermore, the characteristics of mode participation and the effect of wind velocity on this phenomenon, as well as the contributions of background and resonant dynamic response, are examined in both the alongwind and crosswind directions. The results indicate that the guyed mast displacement distributions along the heights are different from those observed in the conventional self-standing lattice towers. The characteristics of multi-mode participation are notable. As wind speeds increase, the alongwind resonant response peaks shift to lower frequencies and become less distinct. In contrast, the crosswind response peaks show no significant variation. The contributions of background and resonant response along the heights, respectively, exhibit a decreasing and an increasing tendency, and wind speed exerts an influence on these phenomena.
期刊介绍:
Engineering Structures provides a forum for a broad blend of scientific and technical papers to reflect the evolving needs of the structural engineering and structural mechanics communities. Particularly welcome are contributions dealing with applications of structural engineering and mechanics principles in all areas of technology. The journal aspires to a broad and integrated coverage of the effects of dynamic loadings and of the modelling techniques whereby the structural response to these loadings may be computed.
The scope of Engineering Structures encompasses, but is not restricted to, the following areas: infrastructure engineering; earthquake engineering; structure-fluid-soil interaction; wind engineering; fire engineering; blast engineering; structural reliability/stability; life assessment/integrity; structural health monitoring; multi-hazard engineering; structural dynamics; optimization; expert systems; experimental modelling; performance-based design; multiscale analysis; value engineering.
Topics of interest include: tall buildings; innovative structures; environmentally responsive structures; bridges; stadiums; commercial and public buildings; transmission towers; television and telecommunication masts; foldable structures; cooling towers; plates and shells; suspension structures; protective structures; smart structures; nuclear reactors; dams; pressure vessels; pipelines; tunnels.
Engineering Structures also publishes review articles, short communications and discussions, book reviews, and a diary on international events related to any aspect of structural engineering.