{"title":"Flexural behavior of reinforced concrete beams at low temperatures","authors":"Gu Xiang-Lin , Wu Jie-Ying , Yu Qian-Qian , Liu Shuang , Huang Qing-Hua","doi":"10.1016/j.engstruct.2024.119263","DOIUrl":null,"url":null,"abstract":"<div><div>This paper performs a comprehensive study on the flexural behavior of reinforced concrete (RC) beams at temperatures ranging from −180 ℃ to 20 ℃. Mechanical properties of steel reinforcements and concrete at low temperatures were first analyzed by tensile tests and uniaxial compressive tests, respectively. Empirical formulae for the mechanical properties of reinforcements and concrete at low temperatures were developed. Subsequently, four-point bending tests were conducted to investigate the bending capacities of RC beams (40 × 40 × 300 mm) at temperatures of 20 ℃, −40 ℃, −80 ℃, −120 ℃, −160 ℃, and −180 ℃. A finite element (FE) model of the RC beams at low temperatures was also established and verified by comparing with the test results. Based on the validated model, a parametric analysis was performed on full-scale RC beams, in consideration with the parameters of reinforcement ratio, compressive strengths of concrete, and the height of a beam. Finally, an analytical model was proposed for the bending capacity of an RC beam at temperatures from −180 ℃ to 20 ℃. Results showed that due to the increased yield strength of reinforcement and compressive strength of concrete, the yield strength and ultimate strength of an RC beam were also obviously increased at low temperatures. As the temperature decreased from 20 ℃ to −40 ℃, −80 ℃, −120 ℃, −160 ℃ and −180 ℃, the ultimate strength of an RC beam was increased by 26.5%, 39.4%, 91.5%, 112.3% and 160.6%, respectively.</div></div>","PeriodicalId":11763,"journal":{"name":"Engineering Structures","volume":"323 ","pages":"Article 119263"},"PeriodicalIF":5.6000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S014102962401825X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
This paper performs a comprehensive study on the flexural behavior of reinforced concrete (RC) beams at temperatures ranging from −180 ℃ to 20 ℃. Mechanical properties of steel reinforcements and concrete at low temperatures were first analyzed by tensile tests and uniaxial compressive tests, respectively. Empirical formulae for the mechanical properties of reinforcements and concrete at low temperatures were developed. Subsequently, four-point bending tests were conducted to investigate the bending capacities of RC beams (40 × 40 × 300 mm) at temperatures of 20 ℃, −40 ℃, −80 ℃, −120 ℃, −160 ℃, and −180 ℃. A finite element (FE) model of the RC beams at low temperatures was also established and verified by comparing with the test results. Based on the validated model, a parametric analysis was performed on full-scale RC beams, in consideration with the parameters of reinforcement ratio, compressive strengths of concrete, and the height of a beam. Finally, an analytical model was proposed for the bending capacity of an RC beam at temperatures from −180 ℃ to 20 ℃. Results showed that due to the increased yield strength of reinforcement and compressive strength of concrete, the yield strength and ultimate strength of an RC beam were also obviously increased at low temperatures. As the temperature decreased from 20 ℃ to −40 ℃, −80 ℃, −120 ℃, −160 ℃ and −180 ℃, the ultimate strength of an RC beam was increased by 26.5%, 39.4%, 91.5%, 112.3% and 160.6%, respectively.
期刊介绍:
Engineering Structures provides a forum for a broad blend of scientific and technical papers to reflect the evolving needs of the structural engineering and structural mechanics communities. Particularly welcome are contributions dealing with applications of structural engineering and mechanics principles in all areas of technology. The journal aspires to a broad and integrated coverage of the effects of dynamic loadings and of the modelling techniques whereby the structural response to these loadings may be computed.
The scope of Engineering Structures encompasses, but is not restricted to, the following areas: infrastructure engineering; earthquake engineering; structure-fluid-soil interaction; wind engineering; fire engineering; blast engineering; structural reliability/stability; life assessment/integrity; structural health monitoring; multi-hazard engineering; structural dynamics; optimization; expert systems; experimental modelling; performance-based design; multiscale analysis; value engineering.
Topics of interest include: tall buildings; innovative structures; environmentally responsive structures; bridges; stadiums; commercial and public buildings; transmission towers; television and telecommunication masts; foldable structures; cooling towers; plates and shells; suspension structures; protective structures; smart structures; nuclear reactors; dams; pressure vessels; pipelines; tunnels.
Engineering Structures also publishes review articles, short communications and discussions, book reviews, and a diary on international events related to any aspect of structural engineering.