G. S. Mazhorin, A. S. Kaz’mina, T. A. Chudakova, I. A. Simakov, N. A. Maleeva, I. N. Moskalenko, V. V. Ryazanov
{"title":"Scalable Quantum Processor Based on Superconducting Fluxonium Qubits","authors":"G. S. Mazhorin, A. S. Kaz’mina, T. A. Chudakova, I. A. Simakov, N. A. Maleeva, I. N. Moskalenko, V. V. Ryazanov","doi":"10.1007/s11141-024-10341-8","DOIUrl":null,"url":null,"abstract":"<p>Superconducting circuits are among the most promising platforms for quantum computing. The milestone experiments demonstrating quantum advantage and suppression of quantum errors have already been performed on a simple and reliable transmon qubit. However, a transmon has a number of structural and technological features which limit the fidelity of basic operations required for a high-performance quantum computing device. Therefore, alternative superconducting qubits with a better protection from external noise are of growing interest. A fluxonium, which is characterized by significant anharmonicity and a large coherence time, is one of the most promising qubits. In this work, we describe the first experiments with an elementary unit cell of a quantum processor with planar fluxonium qubits. Methods of individual initialization and dispersive readout of qubits are demonstrated; single-qubit gates with a fidelity exceeding 99.96% and a two-qubit CZ gate with a fidelity of 99.22% are realized.</p>","PeriodicalId":748,"journal":{"name":"Radiophysics and Quantum Electronics","volume":"66 11","pages":"893 - 906"},"PeriodicalIF":0.8000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiophysics and Quantum Electronics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11141-024-10341-8","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Superconducting circuits are among the most promising platforms for quantum computing. The milestone experiments demonstrating quantum advantage and suppression of quantum errors have already been performed on a simple and reliable transmon qubit. However, a transmon has a number of structural and technological features which limit the fidelity of basic operations required for a high-performance quantum computing device. Therefore, alternative superconducting qubits with a better protection from external noise are of growing interest. A fluxonium, which is characterized by significant anharmonicity and a large coherence time, is one of the most promising qubits. In this work, we describe the first experiments with an elementary unit cell of a quantum processor with planar fluxonium qubits. Methods of individual initialization and dispersive readout of qubits are demonstrated; single-qubit gates with a fidelity exceeding 99.96% and a two-qubit CZ gate with a fidelity of 99.22% are realized.
期刊介绍:
Radiophysics and Quantum Electronics contains the most recent and best Russian research on topics such as:
Radio astronomy;
Plasma astrophysics;
Ionospheric, atmospheric and oceanic physics;
Radiowave propagation;
Quantum radiophysics;
Pphysics of oscillations and waves;
Physics of plasmas;
Statistical radiophysics;
Electrodynamics;
Vacuum and plasma electronics;
Acoustics;
Solid-state electronics.
Radiophysics and Quantum Electronics is a translation of the Russian journal Izvestiya VUZ. Radiofizika, published by the Radiophysical Research Institute and N.I. Lobachevsky State University at Nizhnii Novgorod, Russia. The Russian volume-year is published in English beginning in April.
All articles are peer-reviewed.