Liying Huang, Yuchen Xu, Lang Qin, Yang Liu, Lixin Gu, Heng-Ci Tian, Jialong Hao, Feng Zhang, Wei Du, Jing Yang, Hejiu Hui, Wei Yang, Yangting Lin, Yongliao Zou
{"title":"Petrography, Crystallography, and Geochronology of Baddeleyite With Two Morphologies in a Chang'e-5 Lunar Basalt","authors":"Liying Huang, Yuchen Xu, Lang Qin, Yang Liu, Lixin Gu, Heng-Ci Tian, Jialong Hao, Feng Zhang, Wei Du, Jing Yang, Hejiu Hui, Wei Yang, Yangting Lin, Yongliao Zou","doi":"10.1029/2023JE007955","DOIUrl":null,"url":null,"abstract":"<p>Baddeleyite (ZrO<sub>2</sub>) is widespread in lunar basalts and frequently used for U-Pb geochronology of magmatic and impact events. The formation of baddeleyite involves two primary mechanisms: (a) crystallization from late-stage magma, and (b) decomposition of zircon under high-temperature (high-T) conditions. Baddeleyite with distinct formation mechanisms commonly displays different morphologies. In a Chang'e-5 lunar basalt, we report baddeleyite with two different morphologies, termed “singular type” and “aggregate type.” Petrographic and crystallographic analyses were conducted on both types of baddeleyite to understand their formation conditions and evolution processes. Despite the similarity in the morphology and mineral assemblages between the aggregate type baddeleyite and zircon decomposition products, the petrographic characteristics and the rarity of zircon in lunar basalts tend to suggest that both types of baddeleyite are derived from magma crystallization. Crystallographic relationships observed in both types indicate a phase transformation from the precursor tetragonal-ZrO<sub>2</sub>/cubic-ZrO<sub>2</sub> or orthorhombic-ZrO<sub>2</sub> phase. Two potential scenarios are proposed for the formation of these microstructures: (a) direct crystallization of high symmetry ZrO<sub>2</sub> from magma, and (b) crystallization of baddeleyite from magma followed by a high-pressure (high-P) event causing its phase transition. However, due to unresolved scientific issues in both scenarios, an accurate evolutionary process cannot currently be determined. Therefore, extensive thermodynamic experiments are necessary to enhance our understanding of baddeleyite microstructures as indicators of P-T processes, providing insights into magmatism and the impact history of planetary bodies.</p>","PeriodicalId":16101,"journal":{"name":"Journal of Geophysical Research: Planets","volume":"129 11","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023JE007955","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Planets","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2023JE007955","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Baddeleyite (ZrO2) is widespread in lunar basalts and frequently used for U-Pb geochronology of magmatic and impact events. The formation of baddeleyite involves two primary mechanisms: (a) crystallization from late-stage magma, and (b) decomposition of zircon under high-temperature (high-T) conditions. Baddeleyite with distinct formation mechanisms commonly displays different morphologies. In a Chang'e-5 lunar basalt, we report baddeleyite with two different morphologies, termed “singular type” and “aggregate type.” Petrographic and crystallographic analyses were conducted on both types of baddeleyite to understand their formation conditions and evolution processes. Despite the similarity in the morphology and mineral assemblages between the aggregate type baddeleyite and zircon decomposition products, the petrographic characteristics and the rarity of zircon in lunar basalts tend to suggest that both types of baddeleyite are derived from magma crystallization. Crystallographic relationships observed in both types indicate a phase transformation from the precursor tetragonal-ZrO2/cubic-ZrO2 or orthorhombic-ZrO2 phase. Two potential scenarios are proposed for the formation of these microstructures: (a) direct crystallization of high symmetry ZrO2 from magma, and (b) crystallization of baddeleyite from magma followed by a high-pressure (high-P) event causing its phase transition. However, due to unresolved scientific issues in both scenarios, an accurate evolutionary process cannot currently be determined. Therefore, extensive thermodynamic experiments are necessary to enhance our understanding of baddeleyite microstructures as indicators of P-T processes, providing insights into magmatism and the impact history of planetary bodies.
期刊介绍:
The Journal of Geophysical Research Planets is dedicated to the publication of new and original research in the broad field of planetary science. Manuscripts concerning planetary geology, geophysics, geochemistry, atmospheres, and dynamics are appropriate for the journal when they increase knowledge about the processes that affect Solar System objects. Manuscripts concerning other planetary systems, exoplanets or Earth are welcome when presented in a comparative planetology perspective. Studies in the field of astrobiology will be considered when they have immediate consequences for the interpretation of planetary data. JGR: Planets does not publish manuscripts that deal with future missions and instrumentation, nor those that are primarily of an engineering interest. Instrument, calibration or data processing papers may be appropriate for the journal, but only when accompanied by scientific analysis and interpretation that increases understanding of the studied object. A manuscript that describes a new method or technique would be acceptable for JGR: Planets if it contained new and relevant scientific results obtained using the method. Review articles are generally not appropriate for JGR: Planets, but they may be considered if they form an integral part of a special issue.