Xinyue Wang, Liming Li, Larry Guan, Xun Jiang, Patrick M. Fry, Ulyana A. Dyudina, Leigh N. Fletcher, Enrique García-Melendo, Ricardo Hueso, Raúl Morales-Juberías, Agustin Sánchez-Lavega, Amy A. Simon
{"title":"Spatiotemporal Variability of Saturn's Zonal Winds Observed by Cassini","authors":"Xinyue Wang, Liming Li, Larry Guan, Xun Jiang, Patrick M. Fry, Ulyana A. Dyudina, Leigh N. Fletcher, Enrique García-Melendo, Ricardo Hueso, Raúl Morales-Juberías, Agustin Sánchez-Lavega, Amy A. Simon","doi":"10.1029/2024JE008515","DOIUrl":null,"url":null,"abstract":"<p>The strong zonal winds on giant planets are among the most interesting phenomena in our solar system. Observations recorded by the Composite Infrared Spectrometer (CIRS), the Imaging Science Subsystem (ISS), and the Visual and Infrared Mapping Spectrometer (VIMS) on the Cassini spacecraft are utilized to investigate spatiotemporal variations in Saturn's zonal winds. A general thermal wind equation works for investigating the vertical structure of zonal winds at all latitudes, but it has integration gaps near the equator caused by the cylindrical integration path. Here, we develop an algorithm to address this limitation, which is validated by the observed zonal winds. The algorithm is combined with the CIRS-retrieved temperature and the ISS-measured winds to generate a complete picture of the vertical structure of Saturn's zonal winds for the upper troposphere (i.e., 50–500 mbar), which suggests that the equatorial zonal winds have complicated vertical structures. The zonal winds from 10°S to 10°N initially decrease with altitude and then increase. Additionally, the intense narrow equatorial jet between 3°S and 3°N widens with altitude. The zonal winds are further used to examine the atmospheric stability, which implies some unstable regions. Finally, the analysis of Cassini multi-instrument observations reveals different temporal behaviors of zonal winds in the vertical direction, which suggests that seasonally varying solar flux is one of the drivers of temporal variations in zonal winds.</p>","PeriodicalId":16101,"journal":{"name":"Journal of Geophysical Research: Planets","volume":"130 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Planets","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JE008515","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The strong zonal winds on giant planets are among the most interesting phenomena in our solar system. Observations recorded by the Composite Infrared Spectrometer (CIRS), the Imaging Science Subsystem (ISS), and the Visual and Infrared Mapping Spectrometer (VIMS) on the Cassini spacecraft are utilized to investigate spatiotemporal variations in Saturn's zonal winds. A general thermal wind equation works for investigating the vertical structure of zonal winds at all latitudes, but it has integration gaps near the equator caused by the cylindrical integration path. Here, we develop an algorithm to address this limitation, which is validated by the observed zonal winds. The algorithm is combined with the CIRS-retrieved temperature and the ISS-measured winds to generate a complete picture of the vertical structure of Saturn's zonal winds for the upper troposphere (i.e., 50–500 mbar), which suggests that the equatorial zonal winds have complicated vertical structures. The zonal winds from 10°S to 10°N initially decrease with altitude and then increase. Additionally, the intense narrow equatorial jet between 3°S and 3°N widens with altitude. The zonal winds are further used to examine the atmospheric stability, which implies some unstable regions. Finally, the analysis of Cassini multi-instrument observations reveals different temporal behaviors of zonal winds in the vertical direction, which suggests that seasonally varying solar flux is one of the drivers of temporal variations in zonal winds.
期刊介绍:
The Journal of Geophysical Research Planets is dedicated to the publication of new and original research in the broad field of planetary science. Manuscripts concerning planetary geology, geophysics, geochemistry, atmospheres, and dynamics are appropriate for the journal when they increase knowledge about the processes that affect Solar System objects. Manuscripts concerning other planetary systems, exoplanets or Earth are welcome when presented in a comparative planetology perspective. Studies in the field of astrobiology will be considered when they have immediate consequences for the interpretation of planetary data. JGR: Planets does not publish manuscripts that deal with future missions and instrumentation, nor those that are primarily of an engineering interest. Instrument, calibration or data processing papers may be appropriate for the journal, but only when accompanied by scientific analysis and interpretation that increases understanding of the studied object. A manuscript that describes a new method or technique would be acceptable for JGR: Planets if it contained new and relevant scientific results obtained using the method. Review articles are generally not appropriate for JGR: Planets, but they may be considered if they form an integral part of a special issue.