Simon Oster, Nils Scheuschner, Keerthana Chand, Simon J. Altenburg
{"title":"Local porosity prediction in metal powder bed fusion using in-situ thermography: A comparative study of machine learning techniques","authors":"Simon Oster, Nils Scheuschner, Keerthana Chand, Simon J. Altenburg","doi":"10.1016/j.addma.2024.104502","DOIUrl":null,"url":null,"abstract":"<div><div>The formation of flaws such as internal porosity in parts produced by Metal-based Powder Bed Fusion with Laser Beam (PBF-LB/M) significantly hinders its broader industrial application, as porosity can potentially lead to part failure. Addressing this issue, this study explores the efficacy of in-situ thermography, particularly short-wave infrared thermography, for detecting and predicting porosity during manufacturing. This technique is capable of monitoring the part’s thermal history which is closely connected to the flaw formation process. Recent advancements in Machine Learning (ML) have been increasingly leveraged for porosity prediction in PBF-LB/M. However, previous research primarily focused on global rather than localized porosity prediction which simplified the complex prediction task. Thereby, the opportunity to correlate the predicted flaw position with expected part strain to judge the severity of the flaw for part performance is neglected. This study aims to bridge this gap by studying the potential of SWIR thermography for predicting local porosity levels using regression models. The models are trained on data from two identical HAYNES®282® specimens. We compare the effectiveness of feature-based and raw data-based models in predicting different porosity types and examine the importance of input data in porosity prediction. We show that models trained on SWIR thermogram data can identify systematic trends in local flaw formation. This is demonstrated for forced flaw formation using process parameter shifts and, moreover, for randomly formed flaws in the specimen bulk. Furthermore, we identify features of high importance for the prediction of lack-of-fusion and keyhole porosity from SWIR monitoring data.</div></div>","PeriodicalId":7172,"journal":{"name":"Additive manufacturing","volume":"95 ","pages":"Article 104502"},"PeriodicalIF":10.3000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Additive manufacturing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214860424005487","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
The formation of flaws such as internal porosity in parts produced by Metal-based Powder Bed Fusion with Laser Beam (PBF-LB/M) significantly hinders its broader industrial application, as porosity can potentially lead to part failure. Addressing this issue, this study explores the efficacy of in-situ thermography, particularly short-wave infrared thermography, for detecting and predicting porosity during manufacturing. This technique is capable of monitoring the part’s thermal history which is closely connected to the flaw formation process. Recent advancements in Machine Learning (ML) have been increasingly leveraged for porosity prediction in PBF-LB/M. However, previous research primarily focused on global rather than localized porosity prediction which simplified the complex prediction task. Thereby, the opportunity to correlate the predicted flaw position with expected part strain to judge the severity of the flaw for part performance is neglected. This study aims to bridge this gap by studying the potential of SWIR thermography for predicting local porosity levels using regression models. The models are trained on data from two identical HAYNES®282® specimens. We compare the effectiveness of feature-based and raw data-based models in predicting different porosity types and examine the importance of input data in porosity prediction. We show that models trained on SWIR thermogram data can identify systematic trends in local flaw formation. This is demonstrated for forced flaw formation using process parameter shifts and, moreover, for randomly formed flaws in the specimen bulk. Furthermore, we identify features of high importance for the prediction of lack-of-fusion and keyhole porosity from SWIR monitoring data.
期刊介绍:
Additive Manufacturing stands as a peer-reviewed journal dedicated to delivering high-quality research papers and reviews in the field of additive manufacturing, serving both academia and industry leaders. The journal's objective is to recognize the innovative essence of additive manufacturing and its diverse applications, providing a comprehensive overview of current developments and future prospects.
The transformative potential of additive manufacturing technologies in product design and manufacturing is poised to disrupt traditional approaches. In response to this paradigm shift, a distinctive and comprehensive publication outlet was essential. Additive Manufacturing fulfills this need, offering a platform for engineers, materials scientists, and practitioners across academia and various industries to document and share innovations in these evolving technologies.