Yimeng Li, Xin Luo, Yuqi Yan, Xiangbin Tian, Haitao Zhou, Zhenyuan Xia, Kunpeng Guo, Jinhai Huang, Bo Xu, Hua Wang
{"title":"Tuning anchoring groups of “Y-Type” self-assembled hole transport materials for interface passivation in inverted perovskite solar cells","authors":"Yimeng Li, Xin Luo, Yuqi Yan, Xiangbin Tian, Haitao Zhou, Zhenyuan Xia, Kunpeng Guo, Jinhai Huang, Bo Xu, Hua Wang","doi":"10.1016/j.cej.2024.157383","DOIUrl":null,"url":null,"abstract":"Self-assembled molecules (SAM) as hole transport materials play an important role in performance of inverted perovskite solar cells (PSCs). Common anchoring groups like 2-cyanoacrylic acid and phosphonic acid provide strong anchoring at the bottom interface and excellent passivation during inverted PSC fabrication. In this study, two Y-type hole transport materials (HTMs), <strong>MPA-TB-CA</strong> and <strong>MPA-TB-CPA,</strong> are designed. They have the advantages of good interfacial effects after introducing different anchoring groups into the D-A structure, simple synthesis process and low cost. Therefore, the organic transition between ITO and perovskite layer was established, the frontier molecular orbital energy level was modulated, and the transmittance based on ITO reached 97.1 %. Finally, we find that the inverted PSCs with <strong>MPA-TB-CA</strong> HTM have an excellent power conversion efficiency (PCE) of 19.18 % and negligible hysteresis. In addition, it has a strong binding force with Pb<sup>2+</sup> ions, and the passivated burial interface shows good performance. We believe this design strategy will provide new insights into the commercialization of efficient HTM for PSCs with environmental and outstanding performance advantages.","PeriodicalId":270,"journal":{"name":"Chemical Engineering Journal","volume":null,"pages":null},"PeriodicalIF":13.3000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.cej.2024.157383","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Self-assembled molecules (SAM) as hole transport materials play an important role in performance of inverted perovskite solar cells (PSCs). Common anchoring groups like 2-cyanoacrylic acid and phosphonic acid provide strong anchoring at the bottom interface and excellent passivation during inverted PSC fabrication. In this study, two Y-type hole transport materials (HTMs), MPA-TB-CA and MPA-TB-CPA, are designed. They have the advantages of good interfacial effects after introducing different anchoring groups into the D-A structure, simple synthesis process and low cost. Therefore, the organic transition between ITO and perovskite layer was established, the frontier molecular orbital energy level was modulated, and the transmittance based on ITO reached 97.1 %. Finally, we find that the inverted PSCs with MPA-TB-CA HTM have an excellent power conversion efficiency (PCE) of 19.18 % and negligible hysteresis. In addition, it has a strong binding force with Pb2+ ions, and the passivated burial interface shows good performance. We believe this design strategy will provide new insights into the commercialization of efficient HTM for PSCs with environmental and outstanding performance advantages.
期刊介绍:
The Chemical Engineering Journal is an international research journal that invites contributions of original and novel fundamental research. It aims to provide an international platform for presenting original fundamental research, interpretative reviews, and discussions on new developments in chemical engineering. The journal welcomes papers that describe novel theory and its practical application, as well as those that demonstrate the transfer of techniques from other disciplines. It also welcomes reports on carefully conducted experimental work that is soundly interpreted. The main focus of the journal is on original and rigorous research results that have broad significance. The Catalysis section within the Chemical Engineering Journal focuses specifically on Experimental and Theoretical studies in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. These studies have industrial impact on various sectors such as chemicals, energy, materials, foods, healthcare, and environmental protection.