{"title":"The influence of viscoelasticity of elastomer on flow marks in injection molding of polypropylene/polyolefin elastomer/talc composites","authors":"","doi":"10.1016/j.compositesa.2024.108567","DOIUrl":null,"url":null,"abstract":"<div><div>Polypropylene/elastomer/filler composites are one of the most commonly used materials for spray-free automotive parts to meet the requirements of lightweight. However, its application is serious affected by the flow marks on the surface. Therefore, the reduction or elimination of flow marks defect is important to improve surface quality. In this work, polyolefin elastomer was slightly crosslinked to study its effect on flow marks. The results show that the slightly crosslinking significantly increases the elasticity of elastomer, which makes the melt flow more stable. Meanwhile, the enhanced elasticity is beneficial not only to resist shear deformation of elastomer, but also to recover from deformation during injection molding. As a result, the difference of dispersed phase morphology and surface gloss is reduced, and the flow marks defect is improved. The slightly crosslinked elastomer has little effect on the processability and tensile properties of composites, while the impact properties increase marginally.</div></div>","PeriodicalId":282,"journal":{"name":"Composites Part A: Applied Science and Manufacturing","volume":null,"pages":null},"PeriodicalIF":8.1000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part A: Applied Science and Manufacturing","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359835X24005657","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
Polypropylene/elastomer/filler composites are one of the most commonly used materials for spray-free automotive parts to meet the requirements of lightweight. However, its application is serious affected by the flow marks on the surface. Therefore, the reduction or elimination of flow marks defect is important to improve surface quality. In this work, polyolefin elastomer was slightly crosslinked to study its effect on flow marks. The results show that the slightly crosslinking significantly increases the elasticity of elastomer, which makes the melt flow more stable. Meanwhile, the enhanced elasticity is beneficial not only to resist shear deformation of elastomer, but also to recover from deformation during injection molding. As a result, the difference of dispersed phase morphology and surface gloss is reduced, and the flow marks defect is improved. The slightly crosslinked elastomer has little effect on the processability and tensile properties of composites, while the impact properties increase marginally.
期刊介绍:
Composites Part A: Applied Science and Manufacturing is a comprehensive journal that publishes original research papers, review articles, case studies, short communications, and letters covering various aspects of composite materials science and technology. This includes fibrous and particulate reinforcements in polymeric, metallic, and ceramic matrices, as well as 'natural' composites like wood and biological materials. The journal addresses topics such as properties, design, and manufacture of reinforcing fibers and particles, novel architectures and concepts, multifunctional composites, advancements in fabrication and processing, manufacturing science, process modeling, experimental mechanics, microstructural characterization, interfaces, prediction and measurement of mechanical, physical, and chemical behavior, and performance in service. Additionally, articles on economic and commercial aspects, design, and case studies are welcomed. All submissions undergo rigorous peer review to ensure they contribute significantly and innovatively, maintaining high standards for content and presentation. The editorial team aims to expedite the review process for prompt publication.