Strong Ion-Dipole Interactions for Stable Zinc-Ion Batteries with Wide Temperature Range

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Functional Materials Pub Date : 2024-11-05 DOI:10.1002/adfm.202415451
Hao Huang, Qinling Du, Zixuan Chen, Hongzhong Deng, Changyuan Yan, Xianyu Deng
{"title":"Strong Ion-Dipole Interactions for Stable Zinc-Ion Batteries with Wide Temperature Range","authors":"Hao Huang, Qinling Du, Zixuan Chen, Hongzhong Deng, Changyuan Yan, Xianyu Deng","doi":"10.1002/adfm.202415451","DOIUrl":null,"url":null,"abstract":"Aqueous zinc-ion batteries are widely recognized as promising alternatives to lithium batteries due to their excellent safety, environmental compatibility, and cost-effectiveness. Nonetheless, the formation of dendrites, corrosion, and undesirable side reactions on the zinc surface pose significant challenges to the cycling stability of zinc-ion batteries. In this study, polar propylene carbonate (PC) is paired with tetrafluoroborate anions to establish a strong ion-dipole interaction. Strong ion-dipole interaction can not only alter the solvation structure of zinc ions but also facilitate the formation of a dynamic double electric layer on the surface of the zinc electrode, suppressing the formation of ZnF<sub>2</sub> interface and carbonate, thereby facilitating uniform zinc ion deposition, and consequently improving battery cycling stability over a broad temperature range. Concretely, the formulated electrolyte enhances the cycling stability of the battery over a wide temperature range of −30 to 40 °C, accompanied by a capacity retention of ≈100% even after 10 000 cycles at −30 °C. The symmetrical battery utilizing this electrolyte exhibits stable cycling performance for over 1200 h at 25 °C and 1900 h at −30 °C, respectively. The findings provide a promising direction for the development of long-cycle batteries capable of operating over a wide temperature range.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":null,"pages":null},"PeriodicalIF":18.5000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202415451","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Aqueous zinc-ion batteries are widely recognized as promising alternatives to lithium batteries due to their excellent safety, environmental compatibility, and cost-effectiveness. Nonetheless, the formation of dendrites, corrosion, and undesirable side reactions on the zinc surface pose significant challenges to the cycling stability of zinc-ion batteries. In this study, polar propylene carbonate (PC) is paired with tetrafluoroborate anions to establish a strong ion-dipole interaction. Strong ion-dipole interaction can not only alter the solvation structure of zinc ions but also facilitate the formation of a dynamic double electric layer on the surface of the zinc electrode, suppressing the formation of ZnF2 interface and carbonate, thereby facilitating uniform zinc ion deposition, and consequently improving battery cycling stability over a broad temperature range. Concretely, the formulated electrolyte enhances the cycling stability of the battery over a wide temperature range of −30 to 40 °C, accompanied by a capacity retention of ≈100% even after 10 000 cycles at −30 °C. The symmetrical battery utilizing this electrolyte exhibits stable cycling performance for over 1200 h at 25 °C and 1900 h at −30 °C, respectively. The findings provide a promising direction for the development of long-cycle batteries capable of operating over a wide temperature range.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
强离子-偶极子相互作用实现宽温度范围的稳定锌-离子电池
锌离子水电池因其出色的安全性、环境兼容性和成本效益,被广泛认为是锂电池的理想替代品。然而,锌表面枝晶的形成、腐蚀和不良副反应对锌离子电池的循环稳定性提出了重大挑战。在本研究中,极性碳酸丙烯酯(PC)与四氟硼酸阴离子配对,以建立强离子-偶极相互作用。强离子-偶极子相互作用不仅能改变锌离子的溶解结构,还能促进锌电极表面动态双电层的形成,抑制 ZnF2 界面和碳酸盐的形成,从而促进锌离子的均匀沉积,进而提高电池在宽温度范围内的循环稳定性。具体而言,配制的电解液提高了电池在 -30 至 40 °C 宽温度范围内的循环稳定性,即使在 -30 °C 下循环 10 000 次,容量保持率也≈100%。使用这种电解质的对称电池在 25 °C和-30 °C下分别表现出超过 1200 小时和 1900 小时的稳定循环性能。这些发现为开发能够在宽温度范围内工作的长循环电池提供了一个很有前景的方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
期刊最新文献
Ambient Sunlight Driven Photothermal Green Syngas Production at 100 m3 Scale by the Dynamic Structural Reconstruction of Iron Oxides with 38.7% Efficiency Strong Ion-Dipole Interactions for Stable Zinc-Ion Batteries with Wide Temperature Range Bagworm Silk-Mimetic Protein Fibers with Extraordinary Stiffness via In Vivo Polymerization and Hierarchical Self-Assembly Metalloid Phosphorus Induces Tunable Defect Engineering in High Entropy Oxide Toward Advanced Lithium-Ion Batteries Bio-Realistic Synaptic-Replicated “V” Type Oxygen Vacancy Memristor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1