Metalloid Phosphorus Induces Tunable Defect Engineering in High Entropy Oxide Toward Advanced Lithium-Ion Batteries

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Functional Materials Pub Date : 2024-11-05 DOI:10.1002/adfm.202413782
Yao Lu, Qiaoling Kang, Fengfeng Dong, Mengfei Su, Rui Wang, Lijing Yan, Xianhe Meng, Tingli Ma, Meiqiang Fan, Feng Gao
{"title":"Metalloid Phosphorus Induces Tunable Defect Engineering in High Entropy Oxide Toward Advanced Lithium-Ion Batteries","authors":"Yao Lu, Qiaoling Kang, Fengfeng Dong, Mengfei Su, Rui Wang, Lijing Yan, Xianhe Meng, Tingli Ma, Meiqiang Fan, Feng Gao","doi":"10.1002/adfm.202413782","DOIUrl":null,"url":null,"abstract":"The inferior electrical conductivity and sluggish lithium storage kinetics of conventional high-entropy oxide (HEO) are critical issues hindering their commercialization. The high electronegativity of metalloids can ameliorate this predicament by altering the electronic configuration of HEO compared to metals. Herein, metalloid phosphorus doping in spinel-type HEO (P<sub>x</sub>A<sub>1-x</sub>)B<sub>2</sub>O<sub>4</sub> (A/B = Cr, Mn, Fe, Co, Ni) (P-HEO) is achieved through a facile sol–gel process. The metalloid phosphorus doping facilitates the transfer of electrons from transition metal sites to phosphorus-doped sites, resulting in the formation of electron-rich and electron-deficient local regions on the HEO surface and is conducive to an increase in the total number of active lithium sites in the electrochemical reaction process. Density functional theory calculation reveals Li adsorption energy on the synthesized P-HEO is only −1.102 eV, demonstrating that the phosphorus doping enables a strong electronic coupling between lithium ions and P-HEO. Furthermore, metalloid phosphorus doping also leads to oxygen vacancies formation and lattice distortion, which significantly enhances charge transfer efficiency and diffusion kinetics and results in the enhanced lithium storage performance with impressive rate capability and long-term stability. These findings provide valuable insights for the design of lattice-engineered HEO as versatile electrodes for future energy storage applications.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":null,"pages":null},"PeriodicalIF":18.5000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202413782","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The inferior electrical conductivity and sluggish lithium storage kinetics of conventional high-entropy oxide (HEO) are critical issues hindering their commercialization. The high electronegativity of metalloids can ameliorate this predicament by altering the electronic configuration of HEO compared to metals. Herein, metalloid phosphorus doping in spinel-type HEO (PxA1-x)B2O4 (A/B = Cr, Mn, Fe, Co, Ni) (P-HEO) is achieved through a facile sol–gel process. The metalloid phosphorus doping facilitates the transfer of electrons from transition metal sites to phosphorus-doped sites, resulting in the formation of electron-rich and electron-deficient local regions on the HEO surface and is conducive to an increase in the total number of active lithium sites in the electrochemical reaction process. Density functional theory calculation reveals Li adsorption energy on the synthesized P-HEO is only −1.102 eV, demonstrating that the phosphorus doping enables a strong electronic coupling between lithium ions and P-HEO. Furthermore, metalloid phosphorus doping also leads to oxygen vacancies formation and lattice distortion, which significantly enhances charge transfer efficiency and diffusion kinetics and results in the enhanced lithium storage performance with impressive rate capability and long-term stability. These findings provide valuable insights for the design of lattice-engineered HEO as versatile electrodes for future energy storage applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
类金属磷诱导高熵氧化物中的可调缺陷工程,实现先进的锂离子电池
传统的高熵氧化物(HEO)导电性差、锂储存动力学缓慢,这些都是阻碍其商业化的关键问题。与金属相比,金属的高电负性可以通过改变 HEO 的电子构型来改善这一困境。在这里,通过简便的溶胶-凝胶工艺,在尖晶石型 HEO (PxA1-x)B2O4 (A/B = Cr、Mn、Fe、Co、Ni)(P-HEO)中实现了金属磷掺杂。金属磷的掺杂促进了电子从过渡金属位点向掺磷位点的转移,从而在 HEO 表面形成了富电子和缺电子的局部区域,有利于增加电化学反应过程中活性锂位点的总数。密度泛函理论计算显示,锂在合成的 P-HEO 上的吸附能仅为 -1.102 eV,这表明磷的掺杂使得锂离子与 P-HEO 之间具有很强的电子耦合。此外,金属磷的掺杂还导致了氧空位的形成和晶格畸变,从而显著提高了电荷转移效率和扩散动力学,增强了锂的存储性能,并具有令人印象深刻的速率能力和长期稳定性。这些发现为设计晶格工程 HEO 作为未来储能应用的多功能电极提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
期刊最新文献
Ambient Sunlight Driven Photothermal Green Syngas Production at 100 m3 Scale by the Dynamic Structural Reconstruction of Iron Oxides with 38.7% Efficiency Strong Ion-Dipole Interactions for Stable Zinc-Ion Batteries with Wide Temperature Range Bagworm Silk-Mimetic Protein Fibers with Extraordinary Stiffness via In Vivo Polymerization and Hierarchical Self-Assembly Metalloid Phosphorus Induces Tunable Defect Engineering in High Entropy Oxide Toward Advanced Lithium-Ion Batteries Bio-Realistic Synaptic-Replicated “V” Type Oxygen Vacancy Memristor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1