Design of a microneedle-based enzyme biosensor using a simple and cost-effective electrochemical strategy to monitor superoxide anion released from cancer cells
{"title":"Design of a microneedle-based enzyme biosensor using a simple and cost-effective electrochemical strategy to monitor superoxide anion released from cancer cells","authors":"","doi":"10.1016/j.ab.2024.115710","DOIUrl":null,"url":null,"abstract":"<div><div>Early detection of Reactive oxygen species (ROS) concentration is very important in cancer diagnosis, pathological examinations, and health screening. Studies show that changes in ROS concentration occurs in a short time, causing irreparable damage to living cells and organs. Miniaturized sensors and microelectrodes are capable of online monitoring of electrochemical reactions both <em>in vitro</em> and <em>in vivo</em>. In this study, an enzymatic biosensor based on an electrochemically roughened gold microneedle electrode (RAuME) has been developed to measure superoxide anion released from prostate cancer cells. A uniform layer of reduced graphene oxide (rGO) was deposited onto the gold microelectrode through electrochemical reduction, followed by electrodeposition of yttrium hexacyanoferrate (YHCF) nanoparticles. The deposited layers improved the current response of the microneedle electrode in CV, Impedance, and Amperometric analysis. Furthermore, chitosan was utilized to superoxide dismutase (SOD) immobilization. The presence of chitosan maintained the catalytic properties of the SOD enzyme. The developed microsensor monitored the superoxide anion in a wide linear range from 0.304 to 314 μM with detection limit of 17 nm. According to the physiological concentration of the superoxide anion (10–100 nm), we hypothesized that the developed micro-biosensor can mediate a fast monitoring of ROS that facilitates early-stage cancer diagnosis and treatment.</div></div>","PeriodicalId":7830,"journal":{"name":"Analytical biochemistry","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical biochemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0003269724002549","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Early detection of Reactive oxygen species (ROS) concentration is very important in cancer diagnosis, pathological examinations, and health screening. Studies show that changes in ROS concentration occurs in a short time, causing irreparable damage to living cells and organs. Miniaturized sensors and microelectrodes are capable of online monitoring of electrochemical reactions both in vitro and in vivo. In this study, an enzymatic biosensor based on an electrochemically roughened gold microneedle electrode (RAuME) has been developed to measure superoxide anion released from prostate cancer cells. A uniform layer of reduced graphene oxide (rGO) was deposited onto the gold microelectrode through electrochemical reduction, followed by electrodeposition of yttrium hexacyanoferrate (YHCF) nanoparticles. The deposited layers improved the current response of the microneedle electrode in CV, Impedance, and Amperometric analysis. Furthermore, chitosan was utilized to superoxide dismutase (SOD) immobilization. The presence of chitosan maintained the catalytic properties of the SOD enzyme. The developed microsensor monitored the superoxide anion in a wide linear range from 0.304 to 314 μM with detection limit of 17 nm. According to the physiological concentration of the superoxide anion (10–100 nm), we hypothesized that the developed micro-biosensor can mediate a fast monitoring of ROS that facilitates early-stage cancer diagnosis and treatment.
期刊介绍:
The journal''s title Analytical Biochemistry: Methods in the Biological Sciences declares its broad scope: methods for the basic biological sciences that include biochemistry, molecular genetics, cell biology, proteomics, immunology, bioinformatics and wherever the frontiers of research take the field.
The emphasis is on methods from the strictly analytical to the more preparative that would include novel approaches to protein purification as well as improvements in cell and organ culture. The actual techniques are equally inclusive ranging from aptamers to zymology.
The journal has been particularly active in:
-Analytical techniques for biological molecules-
Aptamer selection and utilization-
Biosensors-
Chromatography-
Cloning, sequencing and mutagenesis-
Electrochemical methods-
Electrophoresis-
Enzyme characterization methods-
Immunological approaches-
Mass spectrometry of proteins and nucleic acids-
Metabolomics-
Nano level techniques-
Optical spectroscopy in all its forms.
The journal is reluctant to include most drug and strictly clinical studies as there are more suitable publication platforms for these types of papers.