Prenatal Exposure to MAM Impairs mPFC and Hippocampal Inhibitory Function in Mice during Adolescence and Adulthood.

IF 2.7 3区 医学 Q3 NEUROSCIENCES eNeuro Pub Date : 2024-11-14 Print Date: 2024-11-01 DOI:10.1523/ENEURO.0362-24.2024
Zhiyin He, Qian He, Xiaorong Tang, Keni Huang, Yiwen Lin, Jianrui Xu, Qiliang Chen, Nenggui Xu, Lulu Yao
{"title":"Prenatal Exposure to MAM Impairs mPFC and Hippocampal Inhibitory Function in Mice during Adolescence and Adulthood.","authors":"Zhiyin He, Qian He, Xiaorong Tang, Keni Huang, Yiwen Lin, Jianrui Xu, Qiliang Chen, Nenggui Xu, Lulu Yao","doi":"10.1523/ENEURO.0362-24.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Neurodevelopmental abnormalities are considered to be one of the important causes of schizophrenia. The offspring of methylazoxymethanol acetate (MAM)-exposed mice are recognized for the dysregulation of neurodevelopment and are well-characterized with schizophrenia-like phenotypes. However, the inhibition-related properties of the medial prefrontal cortex (mPFC) and hippocampus throughout adolescence and adulthood have not been systematically elucidated. In this study, both 10 and 15 mg/kg MAM-exposed mice exhibited schizophrenia-related phenotypes in both adolescence and adulthood, including spontaneous locomotion hyperactivity and deficits in prepulse inhibition. We observed that there was an obvious parvalbumin (PV) loss in the mPFC and hippocampus of MAM-exposed mice, extending from adolescence to adulthood. Moreover, the frequency of spontaneous inhibitory postsynaptic currents (sIPSCs) in pyramidal neurons at mPFC and hippocampus was significantly dampened in the 10 and 15 mg/kg MAM-exposed mice. Furthermore, the firing rate of putative pyramidal neurons in mPFC and hippocampus was increased, while that of putative inhibitory neurons was decreased during both adolescence and adulthood. In conclusion, PV loss in mPFC and hippocampus of MAM-exposed mice may contribute to the impaired inhibitory function leading to the attenuation of inhibition in the brain both in vitro and in vivo.</p>","PeriodicalId":11617,"journal":{"name":"eNeuro","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"eNeuro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1523/ENEURO.0362-24.2024","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/1 0:00:00","PubModel":"Print","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Neurodevelopmental abnormalities are considered to be one of the important causes of schizophrenia. The offspring of methylazoxymethanol acetate (MAM)-exposed mice are recognized for the dysregulation of neurodevelopment and are well-characterized with schizophrenia-like phenotypes. However, the inhibition-related properties of the medial prefrontal cortex (mPFC) and hippocampus throughout adolescence and adulthood have not been systematically elucidated. In this study, both 10 and 15 mg/kg MAM-exposed mice exhibited schizophrenia-related phenotypes in both adolescence and adulthood, including spontaneous locomotion hyperactivity and deficits in prepulse inhibition. We observed that there was an obvious parvalbumin (PV) loss in the mPFC and hippocampus of MAM-exposed mice, extending from adolescence to adulthood. Moreover, the frequency of spontaneous inhibitory postsynaptic currents (sIPSCs) in pyramidal neurons at mPFC and hippocampus was significantly dampened in the 10 and 15 mg/kg MAM-exposed mice. Furthermore, the firing rate of putative pyramidal neurons in mPFC and hippocampus was increased, while that of putative inhibitory neurons was decreased during both adolescence and adulthood. In conclusion, PV loss in mPFC and hippocampus of MAM-exposed mice may contribute to the impaired inhibitory function leading to the attenuation of inhibition in the brain both in vitro and in vivo.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
产前接触 MAM 会损害小鼠青春期和成年期的 mPFC 和海马抑制功能。
神经发育异常被认为是导致精神分裂症的重要原因之一。暴露于醋酸甲唑甲醇(MAM)的小鼠的后代被认为神经发育失调,并具有类似精神分裂症的表型。然而,内侧前额叶皮层(mPFC)和海马在整个青春期和成年期的抑制相关特性尚未得到系统阐明。在这项研究中,10 毫克/千克和 15 毫克/千克 MAM 暴露的小鼠在青春期和成年期都表现出与精神分裂症相关的表型,包括自发运动亢进和冲动前抑制(PPI)缺陷。我们观察到,MAM暴露小鼠的mPFC和海马存在明显的副发光体(PV)缺失,并从青春期一直延续到成年期。此外,10 毫克/千克和 15 毫克/千克 MAM 暴露小鼠 mPFC 和海马锥体神经元的 sIPSCs 频率显著降低。此外,在青春期和成年期,mPFC 和海马的拟锥体神经元的发射率增加,而拟抑制神经元的发射率降低。总之,MAM 暴露小鼠 mPFC 和海马中 PV 的缺失可能导致抑制功能受损,从而导致体外和体内大脑抑制功能的减弱。精神分裂症患者的 mPFC 和海马中的 PV 神经元减少。在这项研究中,我们证实了 10 毫克/千克和 15 毫克/千克的 MAM 暴露会导致小鼠 mPFC 和海马中 PV 神经元的缺失,从而导致抑制功能受损。总之,这些结果提供了PV神经元调节神经网络稳态和参与精神分裂症发病机制的重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
eNeuro
eNeuro Neuroscience-General Neuroscience
CiteScore
5.00
自引率
2.90%
发文量
486
审稿时长
16 weeks
期刊介绍: An open-access journal from the Society for Neuroscience, eNeuro publishes high-quality, broad-based, peer-reviewed research focused solely on the field of neuroscience. eNeuro embodies an emerging scientific vision that offers a new experience for authors and readers, all in support of the Society’s mission to advance understanding of the brain and nervous system.
期刊最新文献
New Vistas for the Relationship between Empathy and Political Ideology. Neural encoding of direction and distance across reference frames in visually guided reaching. Pupil Trend Reflects Sub-Optimal Alertness Maintenance Over 10 Seconds in Vigilance and Working Memory Performance: An Exploratory Study. The overexpression of eIF4E decreases oxytocin levels and induces social-cognitive behavioral disorders in mice. Impulsive Choices Emerge When the Anterior Cingulate Cortex Fails to Encode Deliberative Strategies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1