{"title":"Innovative strategies to Counteract Jahn-Teller effect in manganese oxide for enhanced zinc-ion battery performance","authors":"","doi":"10.1016/j.jpowsour.2024.235690","DOIUrl":null,"url":null,"abstract":"<div><div>Due to its high energy density, non-toxic, economical and efficient, manganese oxide stands out as a promising cathode material for employment in aqueous zinc-ion batteries. However, the Jahn-Teller effect of Mn<sup>3+</sup> and manganese dissolution impose limitations on the widespread application of aqueous zinc-ion batteries during charging and discharging. Herein, the Co doped Mn<sub>2</sub>O<sub>3</sub> electrode material is introduced. Co atoms in the low valence state replace Mn in the manganese oxide lattice, which effectively regulates the layer spacing of Mn<sub>2</sub>O<sub>3</sub>. This modulation maintains the structural stability of the electrode during cycling, prevents structural collapse, and inhibits manganese dissolution and the Jahn-Teller effect. Additionally, Co doping increased oxygen vacancies and improved the conductivity of zinc-ion batteries. The Co-Mn<sub>2</sub>O<sub>3</sub> electrode exhibits a high specific capacity of 478 mAh·g<sup>−1</sup> at 0.1 A g<sup>−1</sup> current density, with 93 % capacity retention 1000 cycles at 1 A g<sup>−1</sup> current density. This study delves into the role of Co doping in suppressing the Jahn-Teller effect, offering new insights for improving manganese oxide as an anode material for zinc-ion batteries.</div></div>","PeriodicalId":377,"journal":{"name":"Journal of Power Sources","volume":null,"pages":null},"PeriodicalIF":8.1000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Power Sources","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378775324016422","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Due to its high energy density, non-toxic, economical and efficient, manganese oxide stands out as a promising cathode material for employment in aqueous zinc-ion batteries. However, the Jahn-Teller effect of Mn3+ and manganese dissolution impose limitations on the widespread application of aqueous zinc-ion batteries during charging and discharging. Herein, the Co doped Mn2O3 electrode material is introduced. Co atoms in the low valence state replace Mn in the manganese oxide lattice, which effectively regulates the layer spacing of Mn2O3. This modulation maintains the structural stability of the electrode during cycling, prevents structural collapse, and inhibits manganese dissolution and the Jahn-Teller effect. Additionally, Co doping increased oxygen vacancies and improved the conductivity of zinc-ion batteries. The Co-Mn2O3 electrode exhibits a high specific capacity of 478 mAh·g−1 at 0.1 A g−1 current density, with 93 % capacity retention 1000 cycles at 1 A g−1 current density. This study delves into the role of Co doping in suppressing the Jahn-Teller effect, offering new insights for improving manganese oxide as an anode material for zinc-ion batteries.
期刊介绍:
The Journal of Power Sources is a publication catering to researchers and technologists interested in various aspects of the science, technology, and applications of electrochemical power sources. It covers original research and reviews on primary and secondary batteries, fuel cells, supercapacitors, and photo-electrochemical cells.
Topics considered include the research, development and applications of nanomaterials and novel componentry for these devices. Examples of applications of these electrochemical power sources include:
• Portable electronics
• Electric and Hybrid Electric Vehicles
• Uninterruptible Power Supply (UPS) systems
• Storage of renewable energy
• Satellites and deep space probes
• Boats and ships, drones and aircrafts
• Wearable energy storage systems