{"title":"Thermal characteristics of LiMnxFe1-xPO4 (x = 0, 0.6) cathode materials for safe lithium-ion batteries","authors":"","doi":"10.1016/j.jpowsour.2024.235755","DOIUrl":null,"url":null,"abstract":"<div><div>Lithium-ion batteries have recently gained attention as energy storage devices due to their high energy densities and various applications. Layered Ni-Mn-Co-based cathode materials are widely used for their high energy density; however, their high cost necessitates the exploration of alternatives. Consequently, olivine-type LiMn<sub>x</sub>Fe<sub>1-x</sub>PO<sub>4</sub> materials are gaining popularity and are being increasingly adopted. While the synthesis methods and electrochemical properties of these materials have been extensively studied, thermal analyses remain limited. In this study, we investigated the thermal properties of olivine-type LiMn<sub>x</sub>Fe<sub>1-x</sub>PO<sub>4</sub> by combining thermal analysis, structural analysis, and computational calculations to evaluate the safety of lithium-ion batteries. Our results show that the formation energy of LiMn<sub>0.6</sub>Fe<sub>0.4</sub>PO<sub>4</sub> is more stable than that of LiFePO<sub>4</sub>. As temperature increases, LiFePO<sub>4</sub> decomposes at 350 °C, whereas LiMn<sub>0.6</sub>Fe<sub>0.4</sub>PO<sub>4</sub> begins to decompose at 450 °C. The P-O bond plays a crucial role in the thermal stability of these materials; as the temperature rises, the thermal stability of the PO<sub>4</sub> group diminishes, leading to structural decomposition. To enhance thermal stability, it is recommended to experiment with doping small amounts of various elements at the P site. This paper provides valuable insights for the design and development of thermally stable olivine-structured cathodes for lithium-ion batteries.</div></div>","PeriodicalId":377,"journal":{"name":"Journal of Power Sources","volume":null,"pages":null},"PeriodicalIF":8.1000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Power Sources","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378775324017075","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Lithium-ion batteries have recently gained attention as energy storage devices due to their high energy densities and various applications. Layered Ni-Mn-Co-based cathode materials are widely used for their high energy density; however, their high cost necessitates the exploration of alternatives. Consequently, olivine-type LiMnxFe1-xPO4 materials are gaining popularity and are being increasingly adopted. While the synthesis methods and electrochemical properties of these materials have been extensively studied, thermal analyses remain limited. In this study, we investigated the thermal properties of olivine-type LiMnxFe1-xPO4 by combining thermal analysis, structural analysis, and computational calculations to evaluate the safety of lithium-ion batteries. Our results show that the formation energy of LiMn0.6Fe0.4PO4 is more stable than that of LiFePO4. As temperature increases, LiFePO4 decomposes at 350 °C, whereas LiMn0.6Fe0.4PO4 begins to decompose at 450 °C. The P-O bond plays a crucial role in the thermal stability of these materials; as the temperature rises, the thermal stability of the PO4 group diminishes, leading to structural decomposition. To enhance thermal stability, it is recommended to experiment with doping small amounts of various elements at the P site. This paper provides valuable insights for the design and development of thermally stable olivine-structured cathodes for lithium-ion batteries.
期刊介绍:
The Journal of Power Sources is a publication catering to researchers and technologists interested in various aspects of the science, technology, and applications of electrochemical power sources. It covers original research and reviews on primary and secondary batteries, fuel cells, supercapacitors, and photo-electrochemical cells.
Topics considered include the research, development and applications of nanomaterials and novel componentry for these devices. Examples of applications of these electrochemical power sources include:
• Portable electronics
• Electric and Hybrid Electric Vehicles
• Uninterruptible Power Supply (UPS) systems
• Storage of renewable energy
• Satellites and deep space probes
• Boats and ships, drones and aircrafts
• Wearable energy storage systems