Synergistically enhanced thermal conductivity, electrical insulation, and mechanical toughness of polymer composites with carbon nanofibers segregated by alumina nanoparticles
Yifei Li, Jiahui Hong, Jing Zhang, Hequn Yang, Hengti Wang, Lijun Ye, Yongjin Li
{"title":"Synergistically enhanced thermal conductivity, electrical insulation, and mechanical toughness of polymer composites with carbon nanofibers segregated by alumina nanoparticles","authors":"Yifei Li, Jiahui Hong, Jing Zhang, Hequn Yang, Hengti Wang, Lijun Ye, Yongjin Li","doi":"10.1016/j.compositesb.2024.111935","DOIUrl":null,"url":null,"abstract":"<div><div>Thermally conductive and electrically insulative polymer composites are in demand in the thermal management of advanced electronics. To extend the magic triangle of thermal conductivity, electrical insulation, and mechanical toughness of polymer composites with carbon-based fillers, double-percolated structures with alumina nanospheres (ANSs) segregated carbon nanofibers (CNFs) are carefully designed in multiphase polymer blends. Specifically, binary blends of poly(<span>l</span>-lactic acid) (PLLA) and ethylene-acrylic ester-glycidyl methacrylate terpolymer (EGMA) have been employed as the polymer matrix. The hybrid fillers of CNFs and ANSs are incorporated by stepwise compounding with PLLA and EGMA. Both CNFs and ANSs are selectively distributed in the EGMA phase even if pre-dispersed in PLLA. The particle-induced transition of droplet EGMA domains in the PLLA matrix into a continuous phase resulted in remarkably improved mechanical toughness. The hybrid networks of CNFs and ANSs in the EGMA phase where ANSs can serve as inter-filler bridging agents for thermal conduction but cut the electrical connections between CNFs when carefully tuning the filler ratios and sizes. The polymer composites with 15 wt% CNFs and 130 wt% ANSs exhibited thermal conductivity of 0.97 W m<sup>−1</sup> K<sup>−1</sup> and notched impact strength of 5.8 kJ m<sup>−2</sup> while maintaining low electrical conductivity of 3.61 × 10<sup>−10</sup> S cm<sup>−1</sup>. Reduced size of ANSs is beneficial to achieving superior mechanical toughness and electrical insulation of polymer composites.</div></div>","PeriodicalId":10660,"journal":{"name":"Composites Part B: Engineering","volume":"289 ","pages":"Article 111935"},"PeriodicalIF":12.7000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part B: Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359836824007479","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Thermally conductive and electrically insulative polymer composites are in demand in the thermal management of advanced electronics. To extend the magic triangle of thermal conductivity, electrical insulation, and mechanical toughness of polymer composites with carbon-based fillers, double-percolated structures with alumina nanospheres (ANSs) segregated carbon nanofibers (CNFs) are carefully designed in multiphase polymer blends. Specifically, binary blends of poly(l-lactic acid) (PLLA) and ethylene-acrylic ester-glycidyl methacrylate terpolymer (EGMA) have been employed as the polymer matrix. The hybrid fillers of CNFs and ANSs are incorporated by stepwise compounding with PLLA and EGMA. Both CNFs and ANSs are selectively distributed in the EGMA phase even if pre-dispersed in PLLA. The particle-induced transition of droplet EGMA domains in the PLLA matrix into a continuous phase resulted in remarkably improved mechanical toughness. The hybrid networks of CNFs and ANSs in the EGMA phase where ANSs can serve as inter-filler bridging agents for thermal conduction but cut the electrical connections between CNFs when carefully tuning the filler ratios and sizes. The polymer composites with 15 wt% CNFs and 130 wt% ANSs exhibited thermal conductivity of 0.97 W m−1 K−1 and notched impact strength of 5.8 kJ m−2 while maintaining low electrical conductivity of 3.61 × 10−10 S cm−1. Reduced size of ANSs is beneficial to achieving superior mechanical toughness and electrical insulation of polymer composites.
期刊介绍:
Composites Part B: Engineering is a journal that publishes impactful research of high quality on composite materials. This research is supported by fundamental mechanics and materials science and engineering approaches. The targeted research can cover a wide range of length scales, ranging from nano to micro and meso, and even to the full product and structure level. The journal specifically focuses on engineering applications that involve high performance composites. These applications can range from low volume and high cost to high volume and low cost composite development.
The main goal of the journal is to provide a platform for the prompt publication of original and high quality research. The emphasis is on design, development, modeling, validation, and manufacturing of engineering details and concepts. The journal welcomes both basic research papers and proposals for review articles. Authors are encouraged to address challenges across various application areas. These areas include, but are not limited to, aerospace, automotive, and other surface transportation. The journal also covers energy-related applications, with a focus on renewable energy. Other application areas include infrastructure, off-shore and maritime projects, health care technology, and recreational products.