{"title":"Ion Mobility-Mass Spectrometry Captures the Structural Consequences of Lipid Nanoparticle Encapsulation on Ribonucleic Acid Cargo.","authors":"Anna G Anders, Brandon T Ruotolo","doi":"10.1021/jacs.4c11066","DOIUrl":null,"url":null,"abstract":"<p><p>Ribonucleic acids (RNAs) are becoming increasingly significant in our search for improved biotherapeutics. RNA-based treatments offer high specificity, targeted delivery, and potentially lower-cost options for various debilitating human diseases. Despite these benefits, there are still relatively few FDA-approved RNA-based therapies, with the notable exceptions being the mRNA (mRNA) COVID-19 vaccines, which are delivered using lipid nanoparticle (LNP) systems. LNPs are distinctive drug delivery systems (DDSs) because of their ability to target specific cells, their biocompatibility, and their efficiency in merging with cellular membranes to enhance treatment effectiveness. While the biophysical landscapes of RNA structures in solution are relatively well understood, the impact of the LNP environment on RNA remains less clear. This study uses native ion mobility-mass spectrometry (IM-MS) and collision-induced unfolding (CIU) techniques to investigate how LNP encapsulation affects RNA structure and stability. We examine how various factors, such as ionization polarity, cofactor binding, lipid types, and lipid ratios, influence LNP-released RNA cargo. Our findings reveal that LNP DDSs induce significant changes in the structures and stabilities of their RNA cargo. However, the extent of these changes strongly depends on the type and composition of the lipids used. We conclude by discussing how IM-MS and CIU can aid in the continued development of more efficient LNP DDSs and improve DDS selection methodologies overall.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":null,"pages":null},"PeriodicalIF":14.4000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c11066","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Ribonucleic acids (RNAs) are becoming increasingly significant in our search for improved biotherapeutics. RNA-based treatments offer high specificity, targeted delivery, and potentially lower-cost options for various debilitating human diseases. Despite these benefits, there are still relatively few FDA-approved RNA-based therapies, with the notable exceptions being the mRNA (mRNA) COVID-19 vaccines, which are delivered using lipid nanoparticle (LNP) systems. LNPs are distinctive drug delivery systems (DDSs) because of their ability to target specific cells, their biocompatibility, and their efficiency in merging with cellular membranes to enhance treatment effectiveness. While the biophysical landscapes of RNA structures in solution are relatively well understood, the impact of the LNP environment on RNA remains less clear. This study uses native ion mobility-mass spectrometry (IM-MS) and collision-induced unfolding (CIU) techniques to investigate how LNP encapsulation affects RNA structure and stability. We examine how various factors, such as ionization polarity, cofactor binding, lipid types, and lipid ratios, influence LNP-released RNA cargo. Our findings reveal that LNP DDSs induce significant changes in the structures and stabilities of their RNA cargo. However, the extent of these changes strongly depends on the type and composition of the lipids used. We conclude by discussing how IM-MS and CIU can aid in the continued development of more efficient LNP DDSs and improve DDS selection methodologies overall.
期刊介绍:
The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.