Reductive Coupling of N-Heteroarenes and 1,2-Dicarbonyls for Direct Access to γ-Amino Acids, Esters, and Ketones Using a Heterogeneous Single-Atom Iridium Catalyst
Huanhuan Jia, Qi Liao, Wei Liu, Luis A. Cipriano, Huanfeng Jiang, Pierre. H. Dixneuf, Gianvito Vilé, Min Zhang
{"title":"Reductive Coupling of N-Heteroarenes and 1,2-Dicarbonyls for Direct Access to γ-Amino Acids, Esters, and Ketones Using a Heterogeneous Single-Atom Iridium Catalyst","authors":"Huanhuan Jia, Qi Liao, Wei Liu, Luis A. Cipriano, Huanfeng Jiang, Pierre. H. Dixneuf, Gianvito Vilé, Min Zhang","doi":"10.1021/jacs.4c09827","DOIUrl":null,"url":null,"abstract":"Despite their significant importance, the challenges in direct and diverse synthesis of N-heterocyclic γ-amino acids/esters/ketones hamper exploration of their applications. Herein, by developing a multifunctional heterogeneous iridium single-atom catalyst composed of silica-confined iridium species and a boron-doped ZrO<sub>2</sub> support (Ir-SAs@B-ZrO<sub>2</sub>/SiO<sub>2</sub>), we describe its utility in establishing a new reductive coupling reaction of N-heteroarenes and 1,2-dicarbonyls for selective and diverse construction of the as-described compounds in a straightforward manner. The striking features, including good substrate and functionality tolerance, high step and atom economy, exceptional catalyst reusability, and diversified product post-transformations, highlight the practicality of the developed chemistry. Mechanistic studies reveal that the synergy between the active Ir sites and acidic support favors a chemoselective reduction of the more inert N-heteroarenes and affords requisite enamine intermediates. In this work, the concept on precise transformation of reductive intermediates will open a door to further develop useful tandem reactions by rational catalyst design.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":null,"pages":null},"PeriodicalIF":14.4000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c09827","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Despite their significant importance, the challenges in direct and diverse synthesis of N-heterocyclic γ-amino acids/esters/ketones hamper exploration of their applications. Herein, by developing a multifunctional heterogeneous iridium single-atom catalyst composed of silica-confined iridium species and a boron-doped ZrO2 support (Ir-SAs@B-ZrO2/SiO2), we describe its utility in establishing a new reductive coupling reaction of N-heteroarenes and 1,2-dicarbonyls for selective and diverse construction of the as-described compounds in a straightforward manner. The striking features, including good substrate and functionality tolerance, high step and atom economy, exceptional catalyst reusability, and diversified product post-transformations, highlight the practicality of the developed chemistry. Mechanistic studies reveal that the synergy between the active Ir sites and acidic support favors a chemoselective reduction of the more inert N-heteroarenes and affords requisite enamine intermediates. In this work, the concept on precise transformation of reductive intermediates will open a door to further develop useful tandem reactions by rational catalyst design.
期刊介绍:
The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.