Molecular Copper–Anthraquinone Photocatalysts for Robust Hydrogen Production

IF 14.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Journal of the American Chemical Society Pub Date : 2024-11-07 DOI:10.1021/jacs.4c11223
Huiqing Yuan, Mei Ming, Shuang Yang, Kai Guo, Bixian Chen, Long Jiang, Zhiji Han
{"title":"Molecular Copper–Anthraquinone Photocatalysts for Robust Hydrogen Production","authors":"Huiqing Yuan, Mei Ming, Shuang Yang, Kai Guo, Bixian Chen, Long Jiang, Zhiji Han","doi":"10.1021/jacs.4c11223","DOIUrl":null,"url":null,"abstract":"The development of robust and inexpensive photocatalysts for H<sub>2</sub> production under visible light irradiation remains a significant challenge. This study presents a series of square planar copper anthraquinone complexes (R<sub>4</sub>N)CuL<sub>2</sub> (R = ethyl, L = alizarin dianion (CuAA); R = <i>n</i>-butyl, L = purpurin dianion (CuPP), (2-hydroxyanthraquinone)formamide dianion (CuAHA)) as molecular photocatalysts to achieve high long-term stability in visible-light-driven H<sub>2</sub> production. These complexes are self-sensitized by the anthraquinone ligands and serve as proton reduction photocatalysts without additional photosensitizers or catalysts. Under irradiation of blue light, complex CuAA produces H<sub>2</sub> in a mixture of H<sub>2</sub>O/DMF with undiminished activity over 42 days, giving a turnover number exceeding 6800. Electrochemical and UV–vis studies are consistent with an EECC mechanism (E: electron transfer and C: protonation) in the catalytic cycle. The initial photochemical steps involve conversion of both anthraquinone ligands to hydroquinones. Further light-driven reductions of the hydroquinones followed by two protonation steps results in formation of H<sub>2</sub>. Dependence of the catalytic rate on the concentration of H<sub>2</sub>O suggests that either the generation of a Cu<sup>II</sup>–H intermediate by protonation or heterocoupling between Cu<sup>II</sup>–H and H<sup>+</sup> to produce H<sub>2</sub> is the turnover-limiting step in catalysis.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":null,"pages":null},"PeriodicalIF":14.4000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c11223","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The development of robust and inexpensive photocatalysts for H2 production under visible light irradiation remains a significant challenge. This study presents a series of square planar copper anthraquinone complexes (R4N)CuL2 (R = ethyl, L = alizarin dianion (CuAA); R = n-butyl, L = purpurin dianion (CuPP), (2-hydroxyanthraquinone)formamide dianion (CuAHA)) as molecular photocatalysts to achieve high long-term stability in visible-light-driven H2 production. These complexes are self-sensitized by the anthraquinone ligands and serve as proton reduction photocatalysts without additional photosensitizers or catalysts. Under irradiation of blue light, complex CuAA produces H2 in a mixture of H2O/DMF with undiminished activity over 42 days, giving a turnover number exceeding 6800. Electrochemical and UV–vis studies are consistent with an EECC mechanism (E: electron transfer and C: protonation) in the catalytic cycle. The initial photochemical steps involve conversion of both anthraquinone ligands to hydroquinones. Further light-driven reductions of the hydroquinones followed by two protonation steps results in formation of H2. Dependence of the catalytic rate on the concentration of H2O suggests that either the generation of a CuII–H intermediate by protonation or heterocoupling between CuII–H and H+ to produce H2 is the turnover-limiting step in catalysis.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于稳定制氢的分子铜蒽醌光催化剂
开发在可见光照射下产生 H2 的坚固而廉价的光催化剂仍然是一项重大挑战。本研究提出了一系列方形平面铜蒽醌配合物 (R4N)CuL2(R = 乙基,L = 茜素二元离子 (CuAA);R = 正丁基,L = 紫嘌呤二元离子 (CuPP),(2-羟基蒽醌)甲酰胺二元离子 (CuAHA)),作为分子光催化剂,在可见光驱动的 H2 生产中实现了高长期稳定性。这些配合物通过蒽醌配体实现自敏化,无需额外的光敏剂或催化剂即可用作质子还原光催化剂。在蓝光照射下,络合物 CuAA 在 H2O/DMF 混合物中产生 H2,42 天内活性不减,周转次数超过 6800 次。电化学和紫外-可见光研究表明,催化循环的机理是 EECC(E:电子转移,C:质子化)。最初的光化学步骤包括将两种蒽醌配体转化为对苯二酚。对苯二酚在光的驱动下进一步还原,然后经过两个质子化步骤形成 H2。催化速率与 H2O 浓度的关系表明,质子化生成 CuII-H 中间体或 CuII-H 与 H+ 异构化生成 H2 是催化过程中限制周转的步骤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
期刊最新文献
Ion Mobility-Mass Spectrometry Captures the Structural Consequences of Lipid Nanoparticle Encapsulation on Ribonucleic Acid Cargo. Significant Chiral Asymmetry Observed in Neutral Amino Acid Ultraviolet Photolysis Observation of Aromatic B13(CO)n+ (n = 1–7) as Boron Carbonyl Analogs of Benzene Reductive Coupling of N-Heteroarenes and 1,2-Dicarbonyls for Direct Access to γ-Amino Acids, Esters, and Ketones Using a Heterogeneous Single-Atom Iridium Catalyst Molecular Copper–Anthraquinone Photocatalysts for Robust Hydrogen Production
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1