{"title":"House cricket protein hydrolysates alleviate hypertension, vascular dysfunction, and oxidative stress in nitric oxide-deficient hypertensive rats.","authors":"Weerapon Sangartit, Pisit Suwannachot, Supawan Thawornchinsombut, Gulladawan Jan-On, Orachorn Boonla, Ketmanee Senaphan","doi":"10.14202/vetworld.2024.2104-2114","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and aim: </strong>Edible insects with high protein content and bioactive peptides with health promotion against chronic disease. Deficiency of nitric oxide (NO) contributes to hypertension, a leading cause of cardiovascular diseases and death worldwide. This study assessed the antihypertensive effects of house cricket protein hydrolysates (HCPH) in NO-deficient hypertensive rats.</p><p><strong>Materials and methods: </strong>Male Sprague-Dawley rats (n = 12/group) were hypertensive after the administration of N<sup>ω</sup>-nitro-L-arginine methyl ester (L-NAME) at a dose of 50 mg/kg body weight (BW)/day in drinking water for 7 weeks. The animals were then treated with HCPH (250 or 500 mg/kg BW/day) or lisinopril (Lis) (1 mg/kg BW/day) for the last 4 weeks of L-NAME administration. Blood pressure (BP), vascular function, and structural changes, endothelial NO synthase (eNOS), and p47<sup>phox</sup> nicotinamide adenine dinucleotide phosphate (NADPH) oxidase protein expression in aortic tissues, plasma nitrate/nitrite, plasma angiotensin-converting enzyme (ACE) activity, and oxidative stress markers in blood and tissues were evaluated.</p><p><strong>Results: </strong>Induction of hypertension resulted in significantly elevated BP, decreased plasma nitrate/nitrite concentration, abolished vascular function, and increased vascular wall thickness. Overproduction of carotid and mesenteric superoxide, increased plasma, heart, and kidney malondialdehyde, and protein carbonyl levels, and increased plasma ACE activity were observed. Down-expression of eNOS with overexpression of p47<sup>phox</sup> NADPH oxidase subunit was also found in L-NAME hypertensive rats. Oral treatment with HCPH, particularly at a dose of 500 mg/kg BW/day, significantly alleviated these alterations in a manner comparable to that of Lis.</p><p><strong>Conclusion: </strong>HCPH improved vascular function and exerted antihypertensive effects, mainly due to the improvement of NO bioavailability, reduction of oxidative stress, and inhibition of ACE.</p>","PeriodicalId":23587,"journal":{"name":"Veterinary World","volume":"17 9","pages":"2104-2114"},"PeriodicalIF":1.7000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11536747/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Veterinary World","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14202/vetworld.2024.2104-2114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/20 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Background and aim: Edible insects with high protein content and bioactive peptides with health promotion against chronic disease. Deficiency of nitric oxide (NO) contributes to hypertension, a leading cause of cardiovascular diseases and death worldwide. This study assessed the antihypertensive effects of house cricket protein hydrolysates (HCPH) in NO-deficient hypertensive rats.
Materials and methods: Male Sprague-Dawley rats (n = 12/group) were hypertensive after the administration of Nω-nitro-L-arginine methyl ester (L-NAME) at a dose of 50 mg/kg body weight (BW)/day in drinking water for 7 weeks. The animals were then treated with HCPH (250 or 500 mg/kg BW/day) or lisinopril (Lis) (1 mg/kg BW/day) for the last 4 weeks of L-NAME administration. Blood pressure (BP), vascular function, and structural changes, endothelial NO synthase (eNOS), and p47phox nicotinamide adenine dinucleotide phosphate (NADPH) oxidase protein expression in aortic tissues, plasma nitrate/nitrite, plasma angiotensin-converting enzyme (ACE) activity, and oxidative stress markers in blood and tissues were evaluated.
Results: Induction of hypertension resulted in significantly elevated BP, decreased plasma nitrate/nitrite concentration, abolished vascular function, and increased vascular wall thickness. Overproduction of carotid and mesenteric superoxide, increased plasma, heart, and kidney malondialdehyde, and protein carbonyl levels, and increased plasma ACE activity were observed. Down-expression of eNOS with overexpression of p47phox NADPH oxidase subunit was also found in L-NAME hypertensive rats. Oral treatment with HCPH, particularly at a dose of 500 mg/kg BW/day, significantly alleviated these alterations in a manner comparable to that of Lis.
Conclusion: HCPH improved vascular function and exerted antihypertensive effects, mainly due to the improvement of NO bioavailability, reduction of oxidative stress, and inhibition of ACE.
期刊介绍:
Veterinary World publishes high quality papers focusing on Veterinary and Animal Science. The fields of study are bacteriology, parasitology, pathology, virology, immunology, mycology, public health, biotechnology, meat science, fish diseases, nutrition, gynecology, genetics, wildlife, laboratory animals, animal models of human infections, prion diseases and epidemiology. Studies on zoonotic and emerging infections are highly appreciated. Review articles are highly appreciated. All articles published by Veterinary World are made freely and permanently accessible online. All articles to Veterinary World are posted online immediately as they are ready for publication.