mosGraphGen: a novel tool to generate multi-omics signaling graphs to facilitate integrative and interpretable graph AI model development.

IF 2.4 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY Bioinformatics advances Pub Date : 2024-10-08 eCollection Date: 2024-01-01 DOI:10.1093/bioadv/vbae151
Heming Zhang, Dekang Cao, Zirui Chen, Xiuyuan Zhang, Yixin Chen, Cole Sessions, Carlos Cruchaga, Philip Payne, Guangfu Li, Michael Province, Fuhai Li
{"title":"mosGraphGen: a novel tool to generate multi-omics signaling graphs to facilitate integrative and interpretable graph AI model development.","authors":"Heming Zhang, Dekang Cao, Zirui Chen, Xiuyuan Zhang, Yixin Chen, Cole Sessions, Carlos Cruchaga, Philip Payne, Guangfu Li, Michael Province, Fuhai Li","doi":"10.1093/bioadv/vbae151","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>Multi-omics data, i.e. genomics, epigenomics, transcriptomics, proteomics, characterize cellular complex signaling systems from multi-level and multi-view and provide a holistic view of complex cellular signaling pathways. However, it remains challenging to integrate and interpret multi-omics data for mining critical biomarkers. Graph AI models have been widely used to analyze graph-structure datasets, and are ideal for integrative multi-omics data analysis because they can naturally integrate and represent multi-omics data as a biologically meaningful multi-level signaling graph and interpret multi-omics data via graph node and edge ranking analysis. Nevertheless, it is nontrivial for graph-AI model developers to pre-analyze multi-omics data and convert the data into biologically meaningful graphs, which can be directly fed into graph-AI models.</p><p><strong>Results: </strong>To resolve this challenge, we developed mosGraphGen (multi-omics signaling graph generator), generating Multi-omics Signaling graphs (mos-graph) of individual samples by mapping multi-omics data onto a biologically meaningful multi-level background signaling network with data normalization by aggregating measurements and aligning to the reference genome. With mosGraphGen, AI model developers can directly apply and evaluate their models using these mos-graphs. In the results, mosGraphGen was used and illustrated using two widely used multi-omics datasets of The Cancer Genome Atlas (TCGA) and Alzheimer's disease (AD) samples.</p><p><strong>Availability and implementation: </strong>The code of mosGraphGen is open-source and publicly available via GitHub: https://github.com/FuhaiLiAiLab/mosGraphGen.</p>","PeriodicalId":72368,"journal":{"name":"Bioinformatics advances","volume":"4 1","pages":"vbae151"},"PeriodicalIF":2.4000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11540438/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioadv/vbae151","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Motivation: Multi-omics data, i.e. genomics, epigenomics, transcriptomics, proteomics, characterize cellular complex signaling systems from multi-level and multi-view and provide a holistic view of complex cellular signaling pathways. However, it remains challenging to integrate and interpret multi-omics data for mining critical biomarkers. Graph AI models have been widely used to analyze graph-structure datasets, and are ideal for integrative multi-omics data analysis because they can naturally integrate and represent multi-omics data as a biologically meaningful multi-level signaling graph and interpret multi-omics data via graph node and edge ranking analysis. Nevertheless, it is nontrivial for graph-AI model developers to pre-analyze multi-omics data and convert the data into biologically meaningful graphs, which can be directly fed into graph-AI models.

Results: To resolve this challenge, we developed mosGraphGen (multi-omics signaling graph generator), generating Multi-omics Signaling graphs (mos-graph) of individual samples by mapping multi-omics data onto a biologically meaningful multi-level background signaling network with data normalization by aggregating measurements and aligning to the reference genome. With mosGraphGen, AI model developers can directly apply and evaluate their models using these mos-graphs. In the results, mosGraphGen was used and illustrated using two widely used multi-omics datasets of The Cancer Genome Atlas (TCGA) and Alzheimer's disease (AD) samples.

Availability and implementation: The code of mosGraphGen is open-source and publicly available via GitHub: https://github.com/FuhaiLiAiLab/mosGraphGen.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
mosGraphGen:一种生成多组学信号图的新型工具,有助于开发具有综合性和可解释性的图形人工智能模型。
动因:多组学数据,即基因组学、表观基因组学、转录组学、蛋白质组学,从多层次、多视角描述了细胞复杂信号系统的特征,提供了复杂细胞信号通路的整体视图。然而,如何整合和解释多组学数据以挖掘关键的生物标志物仍是一项挑战。图人工智能模型已被广泛用于分析图结构数据集,是整合多组学数据分析的理想选择,因为它能自然地将多组学数据整合并表示为具有生物学意义的多层次信号图,并通过图节点和边的排序分析来解释多组学数据。然而,对于图人工智能模型开发者来说,预先分析多组学数据并将数据转换为具有生物学意义的图,从而直接输入图人工智能模型,并非易事:为了解决这一难题,我们开发了mosGraphGen(多组学信号图生成器),通过将多组学数据映射到具有生物学意义的多层次背景信号网络上,并通过聚合测量数据和与参考基因组对齐进行数据归一化,生成单个样本的多组学信号图(mos-graph)。有了mosGraphGen,人工智能模型开发人员就可以直接使用这些mos图来应用和评估他们的模型。在研究结果中,mosGraphGen被用于癌症基因组图谱(TCGA)和阿尔茨海默病(AD)样本这两个广泛使用的多组学数据集,并进行了说明:mosGraphGen的代码是开源的,可通过GitHub公开获取:https://github.com/FuhaiLiAiLab/mosGraphGen。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
期刊最新文献
MultiOmicsIntegrator: a nextflow pipeline for integrated omics analyses. mxfda: a comprehensive toolkit for functional data analysis of single-cell spatial data. Phylogenetic-informed graph deep learning to classify dynamic transmission clusters in infectious disease epidemics. AAclust: k-optimized clustering for selecting redundancy-reduced sets of amino acid scales. Exon nomenclature and classification of transcripts database (ENACTdb): a resource for analyzing alternative splicing mediated proteome diversity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1